Spaces:
Running
on
Zero
Running
on
Zero
from ..models import SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder, SDMotionModel | |
from ..models.model_manager import ModelManager | |
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator | |
from ..prompters import SDPrompter | |
from ..schedulers import EnhancedDDIMScheduler | |
from .sd_image import SDImagePipeline | |
from .dancer import lets_dance | |
from typing import List | |
import torch | |
from tqdm import tqdm | |
def lets_dance_with_long_video( | |
unet: SDUNet, | |
motion_modules: SDMotionModel = None, | |
controlnet: MultiControlNetManager = None, | |
sample = None, | |
timestep = None, | |
encoder_hidden_states = None, | |
ipadapter_kwargs_list = {}, | |
controlnet_frames = None, | |
unet_batch_size = 1, | |
controlnet_batch_size = 1, | |
cross_frame_attention = False, | |
tiled=False, | |
tile_size=64, | |
tile_stride=32, | |
device="cuda", | |
animatediff_batch_size=16, | |
animatediff_stride=8, | |
): | |
num_frames = sample.shape[0] | |
hidden_states_output = [(torch.zeros(sample[0].shape, dtype=sample[0].dtype), 0) for i in range(num_frames)] | |
for batch_id in range(0, num_frames, animatediff_stride): | |
batch_id_ = min(batch_id + animatediff_batch_size, num_frames) | |
# process this batch | |
hidden_states_batch = lets_dance( | |
unet, motion_modules, controlnet, | |
sample[batch_id: batch_id_].to(device), | |
timestep, | |
encoder_hidden_states, | |
ipadapter_kwargs_list=ipadapter_kwargs_list, | |
controlnet_frames=controlnet_frames[:, batch_id: batch_id_].to(device) if controlnet_frames is not None else None, | |
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size, | |
cross_frame_attention=cross_frame_attention, | |
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, device=device | |
).cpu() | |
# update hidden_states | |
for i, hidden_states_updated in zip(range(batch_id, batch_id_), hidden_states_batch): | |
bias = max(1 - abs(i - (batch_id + batch_id_ - 1) / 2) / ((batch_id_ - batch_id - 1 + 1e-2) / 2), 1e-2) | |
hidden_states, num = hidden_states_output[i] | |
hidden_states = hidden_states * (num / (num + bias)) + hidden_states_updated * (bias / (num + bias)) | |
hidden_states_output[i] = (hidden_states, num + bias) | |
if batch_id_ == num_frames: | |
break | |
# output | |
hidden_states = torch.stack([h for h, _ in hidden_states_output]) | |
return hidden_states | |
class SDVideoPipeline(SDImagePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16, use_original_animatediff=True): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_original_animatediff else "scaled_linear") | |
self.prompter = SDPrompter() | |
# models | |
self.text_encoder: SDTextEncoder = None | |
self.unet: SDUNet = None | |
self.vae_decoder: SDVAEDecoder = None | |
self.vae_encoder: SDVAEEncoder = None | |
self.controlnet: MultiControlNetManager = None | |
self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None | |
self.ipadapter: SDIpAdapter = None | |
self.motion_modules: SDMotionModel = None | |
def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): | |
# Main models | |
self.text_encoder = model_manager.fetch_model("sd_text_encoder") | |
self.unet = model_manager.fetch_model("sd_unet") | |
self.vae_decoder = model_manager.fetch_model("sd_vae_decoder") | |
self.vae_encoder = model_manager.fetch_model("sd_vae_encoder") | |
self.prompter.fetch_models(self.text_encoder) | |
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) | |
# ControlNets | |
controlnet_units = [] | |
for config in controlnet_config_units: | |
controlnet_unit = ControlNetUnit( | |
Annotator(config.processor_id, device=self.device), | |
model_manager.fetch_model("sd_controlnet", config.model_path), | |
config.scale | |
) | |
controlnet_units.append(controlnet_unit) | |
self.controlnet = MultiControlNetManager(controlnet_units) | |
# IP-Adapters | |
self.ipadapter = model_manager.fetch_model("sd_ipadapter") | |
self.ipadapter_image_encoder = model_manager.fetch_model("sd_ipadapter_clip_image_encoder") | |
# Motion Modules | |
self.motion_modules = model_manager.fetch_model("sd_motion_modules") | |
if self.motion_modules is None: | |
self.scheduler = EnhancedDDIMScheduler(beta_schedule="scaled_linear") | |
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): | |
pipe = SDVideoPipeline( | |
device=model_manager.device, | |
torch_dtype=model_manager.torch_dtype, | |
) | |
pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes) | |
return pipe | |
def decode_video(self, latents, tiled=False, tile_size=64, tile_stride=32): | |
images = [ | |
self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
for frame_id in range(latents.shape[0]) | |
] | |
return images | |
def encode_video(self, processed_images, tiled=False, tile_size=64, tile_stride=32): | |
latents = [] | |
for image in processed_images: | |
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) | |
latent = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
latents.append(latent.cpu()) | |
latents = torch.concat(latents, dim=0) | |
return latents | |
def __call__( | |
self, | |
prompt, | |
negative_prompt="", | |
cfg_scale=7.5, | |
clip_skip=1, | |
num_frames=None, | |
input_frames=None, | |
ipadapter_images=None, | |
ipadapter_scale=1.0, | |
controlnet_frames=None, | |
denoising_strength=1.0, | |
height=512, | |
width=512, | |
num_inference_steps=20, | |
animatediff_batch_size = 16, | |
animatediff_stride = 8, | |
unet_batch_size = 1, | |
controlnet_batch_size = 1, | |
cross_frame_attention = False, | |
smoother=None, | |
smoother_progress_ids=[], | |
tiled=False, | |
tile_size=64, | |
tile_stride=32, | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
): | |
# Tiler parameters, batch size ... | |
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
other_kwargs = { | |
"animatediff_batch_size": animatediff_batch_size, "animatediff_stride": animatediff_stride, | |
"unet_batch_size": unet_batch_size, "controlnet_batch_size": controlnet_batch_size, | |
"cross_frame_attention": cross_frame_attention, | |
} | |
# Prepare scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
# Prepare latent tensors | |
if self.motion_modules is None: | |
noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1) | |
else: | |
noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype) | |
if input_frames is None or denoising_strength == 1.0: | |
latents = noise | |
else: | |
latents = self.encode_video(input_frames, **tiler_kwargs) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
# Encode prompts | |
prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True) | |
prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False) | |
# IP-Adapter | |
if ipadapter_images is not None: | |
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) | |
ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} | |
ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} | |
else: | |
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} | |
# Prepare ControlNets | |
if controlnet_frames is not None: | |
if isinstance(controlnet_frames[0], list): | |
controlnet_frames_ = [] | |
for processor_id in range(len(controlnet_frames)): | |
controlnet_frames_.append( | |
torch.stack([ | |
self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype) | |
for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id]) | |
], dim=1) | |
) | |
controlnet_frames = torch.concat(controlnet_frames_, dim=0) | |
else: | |
controlnet_frames = torch.stack([ | |
self.controlnet.process_image(controlnet_frame).to(self.torch_dtype) | |
for controlnet_frame in progress_bar_cmd(controlnet_frames) | |
], dim=1) | |
controlnet_kwargs = {"controlnet_frames": controlnet_frames} | |
else: | |
controlnet_kwargs = {"controlnet_frames": None} | |
# Denoise | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = timestep.unsqueeze(0).to(self.device) | |
# Classifier-free guidance | |
noise_pred_posi = lets_dance_with_long_video( | |
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet, | |
sample=latents, timestep=timestep, | |
**prompt_emb_posi, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **other_kwargs, **tiler_kwargs, | |
device=self.device, | |
) | |
noise_pred_nega = lets_dance_with_long_video( | |
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet, | |
sample=latents, timestep=timestep, | |
**prompt_emb_nega, **controlnet_kwargs, **ipadapter_kwargs_list_nega, **other_kwargs, **tiler_kwargs, | |
device=self.device, | |
) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
# DDIM and smoother | |
if smoother is not None and progress_id in smoother_progress_ids: | |
rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True) | |
rendered_frames = self.decode_video(rendered_frames) | |
rendered_frames = smoother(rendered_frames, original_frames=input_frames) | |
target_latents = self.encode_video(rendered_frames) | |
noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents) | |
latents = self.scheduler.step(noise_pred, timestep, latents) | |
# UI | |
if progress_bar_st is not None: | |
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
# Decode image | |
output_frames = self.decode_video(latents, **tiler_kwargs) | |
# Post-process | |
if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids): | |
output_frames = smoother(output_frames, original_frames=input_frames) | |
return output_frames | |