Spaces:
Sleeping
Sleeping
moctardiallo
commited on
Merge branch 'rag'
Browse files
app.py
CHANGED
@@ -23,7 +23,9 @@ with gr.Blocks(fill_height=True) as demo:
|
|
23 |
with gr.Column():
|
24 |
url = gr.Textbox(value="https://www.gradio.app/docs/gradio/chatinterface", label="Docs URL", render=True)
|
25 |
chat = gr.ChatInterface(
|
26 |
-
model.respond,
|
|
|
|
|
27 |
additional_inputs=[
|
28 |
url,
|
29 |
max_tokens,
|
|
|
23 |
with gr.Column():
|
24 |
url = gr.Textbox(value="https://www.gradio.app/docs/gradio/chatinterface", label="Docs URL", render=True)
|
25 |
chat = gr.ChatInterface(
|
26 |
+
# model.respond,
|
27 |
+
model.predict,
|
28 |
+
# model.rag,
|
29 |
additional_inputs=[
|
30 |
url,
|
31 |
max_tokens,
|
data.py
CHANGED
@@ -1,26 +1,34 @@
|
|
1 |
from langchain_community.document_loaders import UnstructuredURLLoader
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
class Data:
|
4 |
-
def __init__(self,
|
5 |
-
self.
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
data = loader.load()
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
Question:{question}
|
24 |
-
Helpful Answers:
|
25 |
-
"""
|
26 |
-
return prompt
|
|
|
1 |
from langchain_community.document_loaders import UnstructuredURLLoader
|
2 |
|
3 |
+
from langchain_community.document_loaders import PyPDFLoader
|
4 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
5 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
8 |
+
|
9 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
10 |
+
|
11 |
class Data:
|
12 |
+
def __init__(self, urls):
|
13 |
+
self.urls = urls
|
14 |
+
## Embedding Using Huggingface
|
15 |
+
self.huggingface_embeddings = HuggingFaceBgeEmbeddings(
|
16 |
+
model_name="BAAI/bge-small-en-v1.5", #sentence-transformers/all-MiniLM-l6-v2
|
17 |
+
model_kwargs={'device':'cpu'},
|
18 |
+
encode_kwargs={'normalize_embeddings':True}
|
19 |
+
)
|
20 |
+
|
21 |
+
@property
|
22 |
+
def retriever(self):
|
23 |
+
loader = UnstructuredURLLoader(urls=self.urls)
|
24 |
data = loader.load()
|
25 |
+
|
26 |
+
## VectorStore Creation
|
27 |
+
vectorstore = FAISS.from_documents(data, self.huggingface_embeddings)
|
28 |
+
|
29 |
+
retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k":3})
|
30 |
+
|
31 |
+
return retriever
|
32 |
+
|
33 |
+
|
34 |
+
|
|
|
|
|
|
|
|
model.py
CHANGED
@@ -1,12 +1,76 @@
|
|
1 |
import os
|
2 |
|
3 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
from data import Data
|
6 |
|
7 |
class Model:
|
8 |
def __init__(self, model_id="meta-llama/Llama-3.2-1B-Instruct"):
|
9 |
self.client = InferenceClient(model_id, token=os.getenv("HUGGINGFACEHUB_API_TOKEN"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def respond(
|
12 |
self,
|
@@ -17,9 +81,7 @@ class Model:
|
|
17 |
temperature,
|
18 |
top_p,
|
19 |
):
|
20 |
-
|
21 |
-
data = Data(url)
|
22 |
-
|
23 |
messages = [{"role": "system", "content": url}]
|
24 |
|
25 |
for val in history:
|
@@ -28,7 +90,7 @@ class Model:
|
|
28 |
if val[1]:
|
29 |
messages.append({"role": "assistant", "content": val[1]})
|
30 |
|
31 |
-
messages.append({"role": "user", "content":
|
32 |
|
33 |
response = ""
|
34 |
|
|
|
1 |
import os
|
2 |
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
from langchain.schema import SystemMessage, AIMessage, HumanMessage
|
5 |
+
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
|
9 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
|
10 |
|
11 |
from data import Data
|
12 |
|
13 |
class Model:
|
14 |
def __init__(self, model_id="meta-llama/Llama-3.2-1B-Instruct"):
|
15 |
self.client = InferenceClient(model_id, token=os.getenv("HUGGINGFACEHUB_API_TOKEN"))
|
16 |
+
self.llm = HuggingFaceEndpoint(
|
17 |
+
repo_id="HuggingFaceH4/zephyr-7b-beta",
|
18 |
+
task="text-generation",
|
19 |
+
max_new_tokens=512,
|
20 |
+
do_sample=False,
|
21 |
+
repetition_penalty=1.03,
|
22 |
+
)
|
23 |
+
self.chat_model = ChatHuggingFace(llm=self.llm, token=os.getenv("HUGGINGFACEHUB_API_TOKEN"))
|
24 |
+
|
25 |
+
def build_prompt(self, question, context_urls):
|
26 |
+
data = Data(context_urls)
|
27 |
+
context = data.retriever.invoke(f"{question}")[0].page_content
|
28 |
+
prompt = f"""
|
29 |
+
Use the following piece of context to answer the question asked.
|
30 |
+
Please try to provide the answer only based on the context
|
31 |
+
{context}
|
32 |
+
Question:{question}
|
33 |
+
Helpful Answers:
|
34 |
+
"""
|
35 |
+
return prompt
|
36 |
+
|
37 |
+
def _build_prompt_rag(self):
|
38 |
+
prompt_template="""
|
39 |
+
Use the following piece of context to answer the question asked.
|
40 |
+
Please try to provide the answer only based on the context
|
41 |
+
{context}
|
42 |
+
Question:{question}
|
43 |
+
Helpful Answers:
|
44 |
+
"""
|
45 |
+
prompt=PromptTemplate(template=prompt_template,input_variables=["context","question"])
|
46 |
+
return prompt
|
47 |
+
|
48 |
+
def _retrieval_qa(self, url):
|
49 |
+
data = Data([url])
|
50 |
+
prompt = self._build_prompt_rag()
|
51 |
+
return RetrievalQA.from_chain_type(
|
52 |
+
llm=self.chat_model,
|
53 |
+
chain_type="stuff",
|
54 |
+
retriever=data.retriever,
|
55 |
+
return_source_documents=True,
|
56 |
+
chain_type_kwargs={"prompt":prompt}
|
57 |
+
)
|
58 |
+
|
59 |
+
def predict(self, message, history, url, max_tokens, temperature, top_p):
|
60 |
+
history_langchain_format = [SystemMessage(content="You're a helpful python developer assistant")]
|
61 |
+
for msg in history:
|
62 |
+
if msg['role'] == "user":
|
63 |
+
history_langchain_format.append(HumanMessage(content=msg['content']))
|
64 |
+
elif msg['role'] == "assistant":
|
65 |
+
history_langchain_format.append(AIMessage(content=msg['content']))
|
66 |
+
history_langchain_format.append(HumanMessage(content=message))
|
67 |
+
|
68 |
+
# ai_msg = self.chat_model.invoke(history_langchain_format)
|
69 |
+
# return ai_msg.content
|
70 |
+
|
71 |
+
ret = self._retrieval_qa(url)
|
72 |
+
return ret.invoke({"query": message})['result']
|
73 |
+
|
74 |
|
75 |
def respond(
|
76 |
self,
|
|
|
81 |
temperature,
|
82 |
top_p,
|
83 |
):
|
84 |
+
|
|
|
|
|
85 |
messages = [{"role": "system", "content": url}]
|
86 |
|
87 |
for val in history:
|
|
|
90 |
if val[1]:
|
91 |
messages.append({"role": "assistant", "content": val[1]})
|
92 |
|
93 |
+
messages.append({"role": "user", "content": self.build_prompt(message, [url])})
|
94 |
|
95 |
response = ""
|
96 |
|
requirements.txt
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
huggingface_hub==0.25.2
|
2 |
langchain-community==0.3.3
|
|
|
|
|
3 |
unstructured==0.16.0
|
4 |
-
unstructured-client==0.26.1
|
|
|
|
1 |
huggingface_hub==0.25.2
|
2 |
langchain-community==0.3.3
|
3 |
+
langchain-core==0.3.12
|
4 |
+
langchain-huggingface==0.1.0
|
5 |
unstructured==0.16.0
|
6 |
+
unstructured-client==0.26.1
|
7 |
+
faiss-cpu==1.9.0
|