Spaces:
Sleeping
Sleeping
moctardiallo
commited on
Commit
•
53953f7
1
Parent(s):
ef93b68
refactor '.predict' add SystemMessage
Browse files
app.py
CHANGED
@@ -18,8 +18,8 @@ with gr.Blocks() as demo:
|
|
18 |
with gr.Column():
|
19 |
url = gr.Textbox(value="https://www.gradio.app/docs/gradio/chatinterface", label="Docs URL", render=True)
|
20 |
chat = gr.ChatInterface(
|
21 |
-
model.respond,
|
22 |
-
|
23 |
# model.rag,
|
24 |
additional_inputs=[
|
25 |
url,
|
|
|
18 |
with gr.Column():
|
19 |
url = gr.Textbox(value="https://www.gradio.app/docs/gradio/chatinterface", label="Docs URL", render=True)
|
20 |
chat = gr.ChatInterface(
|
21 |
+
# model.respond,
|
22 |
+
model.predict,
|
23 |
# model.rag,
|
24 |
additional_inputs=[
|
25 |
url,
|
model.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
2 |
|
3 |
from huggingface_hub import InferenceClient
|
4 |
-
from langchain.schema import AIMessage, HumanMessage
|
|
|
5 |
from langchain.chains import RetrievalQA
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
|
@@ -56,16 +57,20 @@ class Model:
|
|
56 |
)
|
57 |
|
58 |
def predict(self, message, history, url, max_tokens, temperature, top_p):
|
59 |
-
history_langchain_format = []
|
60 |
for msg in history:
|
61 |
if msg['role'] == "user":
|
62 |
history_langchain_format.append(HumanMessage(content=msg['content']))
|
63 |
elif msg['role'] == "assistant":
|
64 |
history_langchain_format.append(AIMessage(content=msg['content']))
|
65 |
history_langchain_format.append(HumanMessage(content=message))
|
66 |
-
|
67 |
-
#
|
68 |
-
return
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def respond(
|
71 |
self,
|
|
|
1 |
import os
|
2 |
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
from langchain.schema import SystemMessage, AIMessage, HumanMessage
|
5 |
+
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
|
|
|
57 |
)
|
58 |
|
59 |
def predict(self, message, history, url, max_tokens, temperature, top_p):
|
60 |
+
history_langchain_format = [SystemMessage(content="You're a helpful python developer assistant")]
|
61 |
for msg in history:
|
62 |
if msg['role'] == "user":
|
63 |
history_langchain_format.append(HumanMessage(content=msg['content']))
|
64 |
elif msg['role'] == "assistant":
|
65 |
history_langchain_format.append(AIMessage(content=msg['content']))
|
66 |
history_langchain_format.append(HumanMessage(content=message))
|
67 |
+
|
68 |
+
# ai_msg = self.chat_model.invoke(history_langchain_format)
|
69 |
+
# return ai_msg.content
|
70 |
+
|
71 |
+
ret = self._retrieval_qa(url)
|
72 |
+
return ret.invoke({"query": message})['result']
|
73 |
+
|
74 |
|
75 |
def respond(
|
76 |
self,
|