VeeAi / app.py
moFouad1's picture
Create app.py
24c3abb verified
import os
import re
import torch
import ffmpeg
import yt_dlp
import torchaudio
import gradio as gr
import shutil
from torch.utils.data import Dataset, DataLoader
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound, CouldNotRetrieveTranscript, VideoUnavailable
from youtube_transcript_api.formatters import TextFormatter
from transformers import (
pipeline,
WhisperProcessor,
WhisperForConditionalGeneration,
)
from fastapi import FastAPI, UploadFile, File
from fastapi.responses import JSONResponse
import uvicorn
# === FASTAPI APP ===
app = FastAPI()
# === UTILS ===
def is_youtube_url(url):
return "youtube.com" in url or "youtu.be" in url
def is_web_url(url):
return url.startswith("http://") or url.startswith("https://")
def get_video_id(url):
match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11})', url)
return match.group(1) if match else None
def try_download_transcript(video_id):
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=["en"])
formatted = TextFormatter().format_transcript(transcript)
return formatted
except (TranscriptsDisabled, NoTranscriptFound, CouldNotRetrieveTranscript, VideoUnavailable):
return None
except Exception as e:
print(f"Transcript error: {e}")
return None
def download_audio_youtube(url, output_path="audio.wav", cookies_path=None):
import subprocess
fallback_video_path = "fallback_video.mp4"
video_id= get_video_id(url)
ydl_opts = {
"format": "best",
"outtmpl": fallback_video_path,
"user_agent": "com.google.android.youtube/17.31.35 (Linux; U; Android 11)",
"compat_opts": ["allow_unplayable_formats"]
}
if cookies_path:
ydl_opts["cookiefile"] = cookies_path
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
except Exception as e:
try:
list_cmd = ["yt-dlp", "-F", url]
if cookies_path:
list_cmd += ["--cookies", cookies_path]
result = subprocess.run(list_cmd, capture_output=True, text=True, timeout=15)
formats = result.stdout or "No formats found."
except Exception as format_err:
formats = f"\u26a0\ufe0f Could not list formats due to: {format_err}"
raise RuntimeError(
"\u26a0\ufe0f Could not download this YouTube video due to restrictions. "
"Please use this alternative tool to extract the transcript manually:\n\n"
f"<https://youtubetotranscript.com/transcript?v={video_id}&current_language_code=en>"
)
return extract_audio_from_video(fallback_video_path, audio_path=output_path)
def download_video_direct(url, output_path="video.mp4"):
ydl_opts = {
"format": "best",
"outtmpl": output_path
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
return output_path
def extract_audio_from_video(video_path, audio_path="audio.wav"):
ffmpeg.input(video_path).output(audio_path, ac=1, ar=16000).run(overwrite_output=True)
return audio_path
def split_audio(input_path, chunk_length_sec=30, target_sr=16000):
waveform, sr = torchaudio.load(input_path)
if sr != target_sr:
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sr)
waveform = resampler(waveform)
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0, keepdim=True)
chunk_samples = target_sr * chunk_length_sec
chunks = [waveform[:, i:i+chunk_samples] for i in range(0, waveform.shape[1], chunk_samples)]
return chunks, target_sr
class AudioChunksDataset(Dataset):
def __init__(self, chunks):
self.chunks = chunks
def __len__(self):
return len(self.chunks)
def __getitem__(self, idx):
return self.chunks[idx].squeeze(0)
def collate_audio_batch(batch):
max_len = max([b.shape[0] for b in batch])
padded_batch = [torch.nn.functional.pad(b, (0, max_len - b.shape[0])) for b in batch]
return torch.stack(padded_batch)
def transcribe_chunks_dataset(chunks, sr, model_name="openai/whisper-small", batch_size=4):
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = WhisperProcessor.from_pretrained(model_name)
model = WhisperForConditionalGeneration.from_pretrained(model_name).to(device)
model.eval()
dataset = AudioChunksDataset(chunks)
dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_audio_batch)
full_transcript = []
for batch_waveforms in dataloader:
wave_list = [waveform.numpy() for waveform in batch_waveforms]
input_features = processor(wave_list, sampling_rate=sr, return_tensors="pt", padding="max_length").input_features.to(device)
with torch.no_grad():
predicted_ids = model.generate(input_features, language="en")
transcriptions = processor.batch_decode(predicted_ids, skip_special_tokens=True)
full_transcript.extend(transcriptions)
return " ".join(full_transcript)
def summarize_with_bart(text, max_tokens=1024):
summarizer = pipeline("summarization", model="facebook/bart-large-cnn", device=0 if torch.cuda.is_available() else -1)
sentences = text.split(". ")
chunks = []
current_chunk = ""
for sentence in sentences:
if len(current_chunk + sentence) <= max_tokens:
current_chunk += sentence + ". "
else:
chunks.append(current_chunk.strip())
current_chunk = sentence + ". "
if current_chunk:
chunks.append(current_chunk.strip())
summary = ""
for chunk in chunks:
out = summarizer(chunk, max_length=150, min_length=30, do_sample=False)
summary += out[0]['summary_text'] + " "
return summary.strip()
def generate_questions_with_pipeline(text, num_questions=5):
question_generator = pipeline("text2text-generation", model="valhalla/t5-base-qg-hl", device=0 if torch.cuda.is_available() else -1)
sentences = text.split(". ")
questions = []
for sentence in sentences[:num_questions * 2]:
if not sentence.strip():
continue
input_text = f"generate question: {sentence.strip()}"
out = question_generator(input_text, max_length=50, do_sample=True, temperature=0.9)
question = out[0]["generated_text"].strip()
if question:
questions.append(question)
return questions[:num_questions]
# === FASTAPI ROUTE FOR DIRECT FILE UPLOAD ===
@app.post("/upload")
async def upload(file: UploadFile = File(...)):
try:
file_path = f"temp_{file.filename}"
with open(file_path, "wb") as f:
f.write(await file.read())
audio_path = extract_audio_from_video(file_path)
chunks, sr = split_audio(audio_path, chunk_length_sec=15)
transcript = transcribe_chunks_dataset(chunks, sr)
summary = summarize_with_bart(transcript)
questions = generate_questions_with_pipeline(summary)
os.remove(file_path)
return JSONResponse({"summary": summary, "questions": questions})
except Exception as e:
return JSONResponse({"error": str(e)})
# === GRADIO UI ===
def process_input_gradio(url_input, file_input, text_input):
try:
transcript = ""
if text_input:
transcript = text_input.strip()
elif file_input is not None:
audio_path = extract_audio_from_video(file_input.name)
chunks, sr = split_audio(audio_path, chunk_length_sec=15)
transcript = transcribe_chunks_dataset(chunks, sr)
elif url_input:
if is_youtube_url(url_input):
video_id = get_video_id(url_input)
transcript = try_download_transcript(video_id)
if not transcript:
audio_path = download_audio_youtube(url_input)
chunks, sr = split_audio(audio_path, chunk_length_sec=15)
transcript = transcribe_chunks_dataset(chunks, sr)
else:
video_file = download_video_direct(url_input)
audio_path = extract_audio_from_video(video_file)
chunks, sr = split_audio(audio_path, chunk_length_sec=15)
transcript = transcribe_chunks_dataset(chunks, sr)
else:
return "Please provide a URL, upload a video file, or paste text.", ""
summary = summarize_with_bart(transcript)
questions = generate_questions_with_pipeline(summary)
return summary, "\n".join([f"{i+1}. {q}" for i, q in enumerate(questions)])
except Exception as e:
return f"Error: {str(e)}", ""
iface = gr.Interface(
fn=process_input_gradio,
inputs=[
gr.Textbox(label="YouTube or Direct Video URL", placeholder="https://..."),
gr.File(label="Or Upload a Video File", file_types=[".mp4", ".mkv", ".webm"]),
gr.Textbox(label="Or Paste Transcript/Text Directly", lines=10, placeholder="Paste transcript or text here...")
],
outputs=[
gr.Textbox(label="Summary", lines=10),
gr.Textbox(label="Generated Questions", lines=10),
],
title="Lecture Summary & Question Generator",
description="Provide a YouTube/Direct video URL, upload a video file, or paste text. If the video is restricted, upload the video file directly."
)
app = gr.mount_gradio_app(app, iface, path="/")
# === RUNNING BOTH FASTAPI + GRADIO ===
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)