|
from speaker_encoder.data_objects.speaker_verification_dataset import SpeakerVerificationDataset |
|
from datetime import datetime |
|
from time import perf_counter as timer |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
import visdom |
|
import umap |
|
|
|
colormap = np.array([ |
|
[76, 255, 0], |
|
[0, 127, 70], |
|
[255, 0, 0], |
|
[255, 217, 38], |
|
[0, 135, 255], |
|
[165, 0, 165], |
|
[255, 167, 255], |
|
[0, 255, 255], |
|
[255, 96, 38], |
|
[142, 76, 0], |
|
[33, 0, 127], |
|
[0, 0, 0], |
|
[183, 183, 183], |
|
], dtype=np.float) / 255 |
|
|
|
|
|
class Visualizations: |
|
def __init__(self, env_name=None, update_every=10, server="http://localhost", disabled=False): |
|
|
|
self.last_update_timestamp = timer() |
|
self.update_every = update_every |
|
self.step_times = [] |
|
self.losses = [] |
|
self.eers = [] |
|
print("Updating the visualizations every %d steps." % update_every) |
|
|
|
|
|
self.disabled = disabled |
|
if self.disabled: |
|
return |
|
|
|
|
|
now = str(datetime.now().strftime("%d-%m %Hh%M")) |
|
if env_name is None: |
|
self.env_name = now |
|
else: |
|
self.env_name = "%s (%s)" % (env_name, now) |
|
|
|
|
|
try: |
|
self.vis = visdom.Visdom(server, env=self.env_name, raise_exceptions=True) |
|
except ConnectionError: |
|
raise Exception("No visdom server detected. Run the command \"visdom\" in your CLI to " |
|
"start it.") |
|
|
|
|
|
|
|
self.loss_win = None |
|
self.eer_win = None |
|
|
|
self.implementation_win = None |
|
self.projection_win = None |
|
self.implementation_string = "" |
|
|
|
def log_params(self): |
|
if self.disabled: |
|
return |
|
from speaker_encoder import params_data |
|
from speaker_encoder import params_model |
|
param_string = "<b>Model parameters</b>:<br>" |
|
for param_name in (p for p in dir(params_model) if not p.startswith("__")): |
|
value = getattr(params_model, param_name) |
|
param_string += "\t%s: %s<br>" % (param_name, value) |
|
param_string += "<b>Data parameters</b>:<br>" |
|
for param_name in (p for p in dir(params_data) if not p.startswith("__")): |
|
value = getattr(params_data, param_name) |
|
param_string += "\t%s: %s<br>" % (param_name, value) |
|
self.vis.text(param_string, opts={"title": "Parameters"}) |
|
|
|
def log_dataset(self, dataset: SpeakerVerificationDataset): |
|
if self.disabled: |
|
return |
|
dataset_string = "" |
|
dataset_string += "<b>Speakers</b>: %s\n" % len(dataset.speakers) |
|
dataset_string += "\n" + dataset.get_logs() |
|
dataset_string = dataset_string.replace("\n", "<br>") |
|
self.vis.text(dataset_string, opts={"title": "Dataset"}) |
|
|
|
def log_implementation(self, params): |
|
if self.disabled: |
|
return |
|
implementation_string = "" |
|
for param, value in params.items(): |
|
implementation_string += "<b>%s</b>: %s\n" % (param, value) |
|
implementation_string = implementation_string.replace("\n", "<br>") |
|
self.implementation_string = implementation_string |
|
self.implementation_win = self.vis.text( |
|
implementation_string, |
|
opts={"title": "Training implementation"} |
|
) |
|
|
|
def update(self, loss, eer, step): |
|
|
|
now = timer() |
|
self.step_times.append(1000 * (now - self.last_update_timestamp)) |
|
self.last_update_timestamp = now |
|
self.losses.append(loss) |
|
self.eers.append(eer) |
|
print(".", end="") |
|
|
|
|
|
if step % self.update_every != 0: |
|
return |
|
time_string = "Step time: mean: %5dms std: %5dms" % \ |
|
(int(np.mean(self.step_times)), int(np.std(self.step_times))) |
|
print("\nStep %6d Loss: %.4f EER: %.4f %s" % |
|
(step, np.mean(self.losses), np.mean(self.eers), time_string)) |
|
if not self.disabled: |
|
self.loss_win = self.vis.line( |
|
[np.mean(self.losses)], |
|
[step], |
|
win=self.loss_win, |
|
update="append" if self.loss_win else None, |
|
opts=dict( |
|
legend=["Avg. loss"], |
|
xlabel="Step", |
|
ylabel="Loss", |
|
title="Loss", |
|
) |
|
) |
|
self.eer_win = self.vis.line( |
|
[np.mean(self.eers)], |
|
[step], |
|
win=self.eer_win, |
|
update="append" if self.eer_win else None, |
|
opts=dict( |
|
legend=["Avg. EER"], |
|
xlabel="Step", |
|
ylabel="EER", |
|
title="Equal error rate" |
|
) |
|
) |
|
if self.implementation_win is not None: |
|
self.vis.text( |
|
self.implementation_string + ("<b>%s</b>" % time_string), |
|
win=self.implementation_win, |
|
opts={"title": "Training implementation"}, |
|
) |
|
|
|
|
|
self.losses.clear() |
|
self.eers.clear() |
|
self.step_times.clear() |
|
|
|
def draw_projections(self, embeds, utterances_per_speaker, step, out_fpath=None, |
|
max_speakers=10): |
|
max_speakers = min(max_speakers, len(colormap)) |
|
embeds = embeds[:max_speakers * utterances_per_speaker] |
|
|
|
n_speakers = len(embeds) // utterances_per_speaker |
|
ground_truth = np.repeat(np.arange(n_speakers), utterances_per_speaker) |
|
colors = [colormap[i] for i in ground_truth] |
|
|
|
reducer = umap.UMAP() |
|
projected = reducer.fit_transform(embeds) |
|
plt.scatter(projected[:, 0], projected[:, 1], c=colors) |
|
plt.gca().set_aspect("equal", "datalim") |
|
plt.title("UMAP projection (step %d)" % step) |
|
if not self.disabled: |
|
self.projection_win = self.vis.matplot(plt, win=self.projection_win) |
|
if out_fpath is not None: |
|
plt.savefig(out_fpath) |
|
plt.clf() |
|
|
|
def save(self): |
|
if not self.disabled: |
|
self.vis.save([self.env_name]) |
|
|