|
from multiprocess.pool import ThreadPool |
|
from speaker_encoder.params_data import * |
|
from speaker_encoder.config import librispeech_datasets, anglophone_nationalites |
|
from datetime import datetime |
|
from speaker_encoder import audio |
|
from pathlib import Path |
|
from tqdm import tqdm |
|
import numpy as np |
|
|
|
|
|
class DatasetLog: |
|
""" |
|
Registers metadata about the dataset in a text file. |
|
""" |
|
def __init__(self, root, name): |
|
self.text_file = open(Path(root, "Log_%s.txt" % name.replace("/", "_")), "w") |
|
self.sample_data = dict() |
|
|
|
start_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M")) |
|
self.write_line("Creating dataset %s on %s" % (name, start_time)) |
|
self.write_line("-----") |
|
self._log_params() |
|
|
|
def _log_params(self): |
|
from speaker_encoder import params_data |
|
self.write_line("Parameter values:") |
|
for param_name in (p for p in dir(params_data) if not p.startswith("__")): |
|
value = getattr(params_data, param_name) |
|
self.write_line("\t%s: %s" % (param_name, value)) |
|
self.write_line("-----") |
|
|
|
def write_line(self, line): |
|
self.text_file.write("%s\n" % line) |
|
|
|
def add_sample(self, **kwargs): |
|
for param_name, value in kwargs.items(): |
|
if not param_name in self.sample_data: |
|
self.sample_data[param_name] = [] |
|
self.sample_data[param_name].append(value) |
|
|
|
def finalize(self): |
|
self.write_line("Statistics:") |
|
for param_name, values in self.sample_data.items(): |
|
self.write_line("\t%s:" % param_name) |
|
self.write_line("\t\tmin %.3f, max %.3f" % (np.min(values), np.max(values))) |
|
self.write_line("\t\tmean %.3f, median %.3f" % (np.mean(values), np.median(values))) |
|
self.write_line("-----") |
|
end_time = str(datetime.now().strftime("%A %d %B %Y at %H:%M")) |
|
self.write_line("Finished on %s" % end_time) |
|
self.text_file.close() |
|
|
|
|
|
def _init_preprocess_dataset(dataset_name, datasets_root, out_dir) -> (Path, DatasetLog): |
|
dataset_root = datasets_root.joinpath(dataset_name) |
|
if not dataset_root.exists(): |
|
print("Couldn\'t find %s, skipping this dataset." % dataset_root) |
|
return None, None |
|
return dataset_root, DatasetLog(out_dir, dataset_name) |
|
|
|
|
|
def _preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, extension, |
|
skip_existing, logger): |
|
print("%s: Preprocessing data for %d speakers." % (dataset_name, len(speaker_dirs))) |
|
|
|
|
|
def preprocess_speaker(speaker_dir: Path): |
|
|
|
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts) |
|
|
|
|
|
|
|
speaker_out_dir = out_dir.joinpath(speaker_name) |
|
speaker_out_dir.mkdir(exist_ok=True) |
|
sources_fpath = speaker_out_dir.joinpath("_sources.txt") |
|
|
|
|
|
|
|
if sources_fpath.exists(): |
|
try: |
|
with sources_fpath.open("r") as sources_file: |
|
existing_fnames = {line.split(",")[0] for line in sources_file} |
|
except: |
|
existing_fnames = {} |
|
else: |
|
existing_fnames = {} |
|
|
|
|
|
sources_file = sources_fpath.open("a" if skip_existing else "w") |
|
for in_fpath in speaker_dir.glob("**/*.%s" % extension): |
|
|
|
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts) |
|
out_fname = out_fname.replace(".%s" % extension, ".npy") |
|
if skip_existing and out_fname in existing_fnames: |
|
continue |
|
|
|
|
|
wav = audio.preprocess_wav(in_fpath) |
|
if len(wav) == 0: |
|
continue |
|
|
|
|
|
frames = audio.wav_to_mel_spectrogram(wav) |
|
if len(frames) < partials_n_frames: |
|
continue |
|
|
|
out_fpath = speaker_out_dir.joinpath(out_fname) |
|
np.save(out_fpath, frames) |
|
logger.add_sample(duration=len(wav) / sampling_rate) |
|
sources_file.write("%s,%s\n" % (out_fname, in_fpath)) |
|
|
|
sources_file.close() |
|
|
|
|
|
with ThreadPool(8) as pool: |
|
list(tqdm(pool.imap(preprocess_speaker, speaker_dirs), dataset_name, len(speaker_dirs), |
|
unit="speakers")) |
|
logger.finalize() |
|
print("Done preprocessing %s.\n" % dataset_name) |
|
|
|
|
|
|
|
def __preprocess_speaker(speaker_dir: Path, datasets_root: Path, out_dir: Path, extension: str, skip_existing: bool): |
|
|
|
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts) |
|
|
|
|
|
|
|
speaker_out_dir = out_dir.joinpath(speaker_name) |
|
speaker_out_dir.mkdir(exist_ok=True) |
|
sources_fpath = speaker_out_dir.joinpath("_sources.txt") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
existing_fnames = {} |
|
|
|
sources_file = sources_fpath.open("a" if skip_existing else "w") |
|
|
|
for in_fpath in speaker_dir.glob("**/*.%s" % extension): |
|
|
|
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts) |
|
out_fname = out_fname.replace(".%s" % extension, ".npy") |
|
if skip_existing and out_fname in existing_fnames: |
|
continue |
|
|
|
|
|
wav = audio.preprocess_wav(in_fpath) |
|
if len(wav) == 0: |
|
continue |
|
|
|
|
|
frames = audio.wav_to_mel_spectrogram(wav) |
|
if len(frames) < partials_n_frames: |
|
continue |
|
|
|
out_fpath = speaker_out_dir.joinpath(out_fname) |
|
np.save(out_fpath, frames) |
|
|
|
sources_file.write("%s,%s\n" % (out_fname, in_fpath)) |
|
|
|
sources_file.close() |
|
return len(wav) |
|
|
|
def _preprocess_speaker_dirs_vox2(speaker_dirs, dataset_name, datasets_root, out_dir, extension, |
|
skip_existing, logger): |
|
|
|
from pathos.multiprocessing import ProcessingPool as Pool |
|
|
|
def __preprocess_speaker(speaker_dir: Path): |
|
|
|
speaker_name = "_".join(speaker_dir.relative_to(datasets_root).parts) |
|
|
|
|
|
|
|
speaker_out_dir = out_dir.joinpath(speaker_name) |
|
speaker_out_dir.mkdir(exist_ok=True) |
|
sources_fpath = speaker_out_dir.joinpath("_sources.txt") |
|
|
|
existing_fnames = {} |
|
|
|
sources_file = sources_fpath.open("a" if skip_existing else "w") |
|
wav_lens = [] |
|
for in_fpath in speaker_dir.glob("**/*.%s" % extension): |
|
|
|
out_fname = "_".join(in_fpath.relative_to(speaker_dir).parts) |
|
out_fname = out_fname.replace(".%s" % extension, ".npy") |
|
if skip_existing and out_fname in existing_fnames: |
|
continue |
|
|
|
|
|
wav = audio.preprocess_wav(in_fpath) |
|
if len(wav) == 0: |
|
continue |
|
|
|
|
|
frames = audio.wav_to_mel_spectrogram(wav) |
|
if len(frames) < partials_n_frames: |
|
continue |
|
|
|
out_fpath = speaker_out_dir.joinpath(out_fname) |
|
np.save(out_fpath, frames) |
|
|
|
sources_file.write("%s,%s\n" % (out_fname, in_fpath)) |
|
wav_lens.append(len(wav)) |
|
sources_file.close() |
|
return wav_lens |
|
|
|
print("%s: Preprocessing data for %d speakers." % (dataset_name, len(speaker_dirs))) |
|
|
|
|
|
|
|
|
|
pool = Pool(processes=20) |
|
for i, wav_lens in enumerate(pool.map(__preprocess_speaker, speaker_dirs), 1): |
|
for wav_len in wav_lens: |
|
logger.add_sample(duration=wav_len / sampling_rate) |
|
print(f'{i}/{len(speaker_dirs)} \r') |
|
|
|
logger.finalize() |
|
print("Done preprocessing %s.\n" % dataset_name) |
|
|
|
|
|
def preprocess_librispeech(datasets_root: Path, out_dir: Path, skip_existing=False): |
|
for dataset_name in librispeech_datasets["train"]["other"]: |
|
|
|
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir) |
|
if not dataset_root: |
|
return |
|
|
|
|
|
speaker_dirs = list(dataset_root.glob("*")) |
|
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "flac", |
|
skip_existing, logger) |
|
|
|
|
|
def preprocess_voxceleb1(datasets_root: Path, out_dir: Path, skip_existing=False): |
|
|
|
dataset_name = "VoxCeleb1" |
|
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir) |
|
if not dataset_root: |
|
return |
|
|
|
|
|
with dataset_root.joinpath("vox1_meta.csv").open("r") as metafile: |
|
metadata = [line.split("\t") for line in metafile][1:] |
|
|
|
|
|
nationalities = {line[0]: line[3] for line in metadata} |
|
|
|
|
|
keep_speaker_ids = [speaker_id for speaker_id, nationality in nationalities.items()] |
|
print("VoxCeleb1: using samples from %d (presumed anglophone) speakers out of %d." % |
|
(len(keep_speaker_ids), len(nationalities))) |
|
|
|
|
|
speaker_dirs = dataset_root.joinpath("wav").glob("*") |
|
speaker_dirs = [speaker_dir for speaker_dir in speaker_dirs if |
|
speaker_dir.name in keep_speaker_ids] |
|
print("VoxCeleb1: found %d anglophone speakers on the disk, %d missing (this is normal)." % |
|
(len(speaker_dirs), len(keep_speaker_ids) - len(speaker_dirs))) |
|
|
|
|
|
_preprocess_speaker_dirs(speaker_dirs, dataset_name, datasets_root, out_dir, "wav", |
|
skip_existing, logger) |
|
|
|
|
|
def preprocess_voxceleb2(datasets_root: Path, out_dir: Path, skip_existing=False): |
|
|
|
dataset_name = "VoxCeleb2" |
|
dataset_root, logger = _init_preprocess_dataset(dataset_name, datasets_root, out_dir) |
|
if not dataset_root: |
|
return |
|
|
|
|
|
|
|
speaker_dirs = list(dataset_root.joinpath("dev", "aac").glob("*")) |
|
_preprocess_speaker_dirs_vox2(speaker_dirs, dataset_name, datasets_root, out_dir, "m4a", |
|
skip_existing, logger) |
|
|