|
import os |
|
import torch |
|
import librosa |
|
import gradio as gr |
|
from scipy.io.wavfile import write |
|
from transformers import WavLMModel |
|
|
|
import utils |
|
from models import SynthesizerTrn |
|
from mel_processing import mel_spectrogram_torch |
|
from speaker_encoder.voice_encoder import SpeakerEncoder |
|
|
|
''' |
|
def get_wavlm(): |
|
os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU') |
|
shutil.move('WavLM-Large.pt', 'wavlm') |
|
''' |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
print("Loading FreeVC...") |
|
hps = utils.get_hparams_from_file("configs/freevc.json") |
|
freevc = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model).to(device) |
|
_ = freevc.eval() |
|
_ = utils.load_checkpoint("checkpoints/freevc.pth", freevc, None) |
|
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt') |
|
|
|
print("Loading FreeVC(24k)...") |
|
hps = utils.get_hparams_from_file("configs/freevc-24.json") |
|
freevc_24 = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model).to(device) |
|
_ = freevc_24.eval() |
|
_ = utils.load_checkpoint("checkpoints/freevc-24.pth", freevc_24, None) |
|
|
|
print("Loading FreeVC-s...") |
|
hps = utils.get_hparams_from_file("configs/freevc-s.json") |
|
freevc_s = SynthesizerTrn( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model).to(device) |
|
_ = freevc_s.eval() |
|
_ = utils.load_checkpoint("checkpoints/freevc-s.pth", freevc_s, None) |
|
|
|
print("Loading WavLM for content...") |
|
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device) |
|
|
|
def convert(model, src, tgt): |
|
with torch.no_grad(): |
|
|
|
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate) |
|
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20) |
|
if model == "FreeVC" or model == "FreeVC (24kHz)": |
|
g_tgt = smodel.embed_utterance(wav_tgt) |
|
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device) |
|
else: |
|
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device) |
|
mel_tgt = mel_spectrogram_torch( |
|
wav_tgt, |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax |
|
) |
|
|
|
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate) |
|
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device) |
|
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device) |
|
|
|
if model == "FreeVC": |
|
audio = freevc.infer(c, g=g_tgt) |
|
elif model == "FreeVC-s": |
|
audio = freevc_s.infer(c, mel=mel_tgt) |
|
else: |
|
audio = freevc_24.infer(c, g=g_tgt) |
|
audio = audio[0][0].data.cpu().float().numpy() |
|
if model == "FreeVC" or model == "FreeVC-s": |
|
write("out.wav", hps.data.sampling_rate, audio) |
|
else: |
|
write("out.wav", 24000, audio) |
|
out = "out.wav" |
|
return out |
|
|
|
model = gr.Dropdown(choices=["FreeVC", "FreeVC-s", "FreeVC (24kHz)"], value="FreeVC",type="value", label="Model") |
|
audio1 = gr.inputs.Audio(label="Source Audio", type='filepath') |
|
audio2 = gr.inputs.Audio(label="Reference Audio", type='filepath') |
|
inputs = [model, audio1, audio2] |
|
outputs = gr.outputs.Audio(label="Output Audio", type='filepath') |
|
|
|
title = "FreeVC" |
|
description = "Gradio Demo for FreeVC: Towards High-Quality Text-Free One-Shot Voice Conversion. To use it, simply upload your audio, or click the example to load. Read more at the links below. Note: It seems that the WavLM checkpoint in HuggingFace is a little different from the one used to train FreeVC, which may degrade the performance a bit. In addition, speaker similarity can be largely affected if there are too much silence in the reference audio, so please <strong>trim</strong> it before submitting." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2210.15418' target='_blank'>Paper</a> | <a href='https://github.com/OlaWod/FreeVC' target='_blank'>Github Repo</a></p>" |
|
|
|
examples=[["FreeVC", 'p225_001.wav', 'p226_002.wav'], ["FreeVC-s", 'p226_002.wav', 'p225_001.wav'], ["FreeVC (24kHz)", 'p225_001.wav', 'p226_002.wav']] |
|
|
|
gr.Interface(convert, inputs, outputs, title=title, description=description, article=article, examples=examples, enable_queue=True).launch() |
|
|