Sonja Topf commited on
Commit
25fddff
·
1 Parent(s): 759c8fc

final commit

Browse files
Files changed (4) hide show
  1. MODEL_CARD.md +30 -0
  2. README.md +5 -5
  3. app.py +3 -3
  4. src/preprocess.py +1 -1
MODEL_CARD.md ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Model card - tox21_chemprop_classifier
2
+ ### Model details
3
+ - Model name: Graph Isomorphism Network Tox21 Baseline
4
+ - Developer: MIT & Stanford (trained by JKU Linz)
5
+ - Paper URL: https://arxiv.org/abs/1810.00826
6
+ - Model type / architecture:
7
+ - Graph Isomorphism Network implemented using PyTorch.
8
+ - Hyperparameters: [link to config](https://huggingface.co/spaces/ml-jku/tox21_gin_classifier/blob/main/config/config.json)
9
+ - A multitask network is trained for all Tox21 targets.
10
+ - Inference: Access via FastAPI endpoint. Upon a Tox21 prediction request, the model
11
+ generates and returns predictions for all Tox21 targets simultaneously.
12
+ - Model version: v0
13
+ - Model date: 14.10.2025
14
+ - Reproducibility: Code for full training is available and enables retraining of the model from
15
+ scratch.
16
+
17
+ ### Intended use
18
+ This model serves as a baseline benchmark for evaluating and comparing toxicity prediction
19
+ methods across the 12 pathway assays of the Tox21 dataset. It is not intended for clinical
20
+ decision-making without experimental validation.
21
+
22
+ ### Metric
23
+ Each Tox21 task is evaluated using the area under the receiver operating characteristic curve
24
+ (AUC). Overall performance is reported as the mean AUC across all individual tasks.
25
+
26
+ ### Training data
27
+ Tox21 training and validation sets.
28
+
29
+ ### Evaluation data
30
+ Tox21 test set.
README.md CHANGED
@@ -5,20 +5,20 @@ colorFrom: green
5
  colorTo: blue
6
  sdk: docker
7
  pinned: false
8
- license: apache-2.0
9
  short_description: Graph Isomorphism Network Baseline Classifier for Tox21
10
  ---
11
 
12
  # Tox21 Graph Isomorphism Network Classifier
13
 
14
- This repository hosts a Hugging Face Space that provides an examplary API for submitting models to the [Tox21 Leaderboard](https://huggingface.co/spaces/tschouis/tox21_leaderboard).
15
 
16
  In this example, we trained a GIN classifier on the Tox21 targets and saved the trained model in the `checkpoints/` folder.
17
 
18
- **Important:** For leaderboard submission, your Space needs to include training code. The file `train.py` should train the model using the config specified inside the `config/` folder and save the final model parameters into a file inside the `checkpoints/` folder. The model should be trained using the [Tox21_dataset](https://huggingface.co/datasets/tschouis/tox21) provided on Hugging Face. The datasets can be loaded like this:
19
  ```python
20
  from datasets import load_dataset
21
- ds = load_dataset("tschouis/tox21", token=token)
22
  train_df = ds["train"].to_pandas()
23
  val_df = ds["validation"].to_pandas()
24
  ```
@@ -60,7 +60,7 @@ That’s it, your model will be available as an API endpoint for the Tox21 Leade
60
  To run the GIN classifier, clone the repository and install dependencies:
61
 
62
  ```bash
63
- git clone https://huggingface.co/spaces/tschouis/tox21_gin_classifier
64
  cd tox21_gin_classifier
65
  pip install -r requirements.txt
66
  ```
 
5
  colorTo: blue
6
  sdk: docker
7
  pinned: false
8
+ license: cc-by-nc-4.0
9
  short_description: Graph Isomorphism Network Baseline Classifier for Tox21
10
  ---
11
 
12
  # Tox21 Graph Isomorphism Network Classifier
13
 
14
+ This repository hosts a Hugging Face Space that provides an examplary API for submitting models to the [Tox21 Leaderboard](https://huggingface.co/spaces/ml-jku/tox21_leaderboard).
15
 
16
  In this example, we trained a GIN classifier on the Tox21 targets and saved the trained model in the `checkpoints/` folder.
17
 
18
+ **Important:** For leaderboard submission, your Space needs to include training code. The file `train.py` should train the model using the config specified inside the `config/` folder and save the final model parameters into a file inside the `checkpoints/` folder. The model should be trained using the [Tox21_dataset](https://huggingface.co/datasets/ml-jku/tox21) provided on Hugging Face. The datasets can be loaded like this:
19
  ```python
20
  from datasets import load_dataset
21
+ ds = load_dataset("ml-jku/tox21", token=token)
22
  train_df = ds["train"].to_pandas()
23
  val_df = ds["validation"].to_pandas()
24
  ```
 
60
  To run the GIN classifier, clone the repository and install dependencies:
61
 
62
  ```bash
63
+ git clone https://huggingface.co/spaces/ml-jku/tox21_gin_classifier
64
  cd tox21_gin_classifier
65
  pip install -r requirements.txt
66
  ```
app.py CHANGED
@@ -44,8 +44,8 @@ def root():
44
  @app.get("/metadata")
45
  def metadata():
46
  return {
47
- "name": "AwesomeTox",
48
- "version": "1.0.0",
49
  "max_batch_size": 256,
50
  "tox_endpoints": [
51
  "NR-AR",
@@ -74,5 +74,5 @@ def predict(request: Request):
74
  predictions = predict_func(request.smiles)
75
  return {
76
  "predictions": predictions,
77
- "model_info": {"name": "random_clf", "version": "1.0.0"},
78
  }
 
44
  @app.get("/metadata")
45
  def metadata():
46
  return {
47
+ "name": "Tox21 GIN Classifier",
48
+ "version": "0.1.0",
49
  "max_batch_size": 256,
50
  "tox_endpoints": [
51
  "NR-AR",
 
74
  predictions = predict_func(request.smiles)
75
  return {
76
  "predictions": predictions,
77
+ "model_info": {"name": "Tox21 GIN Classifier", "version": "0.1.0"},
78
  }
src/preprocess.py CHANGED
@@ -9,7 +9,7 @@ from torch_geometric.utils import from_rdmol
9
  from datasets import load_dataset
10
 
11
  def get_tox21_split(token, cvfold=None):
12
- ds = load_dataset("tschouis/tox21", token=token)
13
 
14
  train_df = ds["train"].to_pandas()
15
  val_df = ds["validation"].to_pandas()
 
9
  from datasets import load_dataset
10
 
11
  def get_tox21_split(token, cvfold=None):
12
+ ds = load_dataset("ml-jku/tox21", token=token)
13
 
14
  train_df = ds["train"].to_pandas()
15
  val_df = ds["validation"].to_pandas()