|
import os |
|
from huggingface_hub import Repository |
|
|
|
H4_TOKEN = os.environ.get("H4_TOKEN", None) |
|
|
|
|
|
def get_all_requested_models(requested_models_dir): |
|
depth = 1 |
|
file_names = [] |
|
|
|
for root, dirs, files in os.walk(requested_models_dir): |
|
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep) |
|
if current_depth == depth: |
|
file_names.extend([os.path.join(root, file) for file in files]) |
|
|
|
return set([file_name.lower().split("eval_requests/")[1] for file_name in file_names]) |
|
|
|
def load_all_info_from_hub(LMEH_REPO): |
|
auto_eval_repo = None |
|
requested_models = None |
|
if H4_TOKEN: |
|
print("Pulling evaluation requests and results.") |
|
|
|
auto_eval_repo = Repository( |
|
local_dir="./auto_evals/", |
|
clone_from=LMEH_REPO, |
|
use_auth_token=H4_TOKEN, |
|
repo_type="dataset", |
|
) |
|
auto_eval_repo.git_pull() |
|
|
|
requested_models_dir = "./auto_evals/eval_requests" |
|
requested_models = get_all_requested_models(requested_models_dir) |
|
|
|
return auto_eval_repo, requested_models |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|