final-assignment / basic_agent.py
ffreemt
Fix {}
9c6c2c3
# pylint: disable=line-too-long,missing-module-docstring,missing-class-docstring,missing-function-docstring,broad-exception-caught, unused-variable, too-many-statements,too-many-return-statements,too-many-locals,redefined-builtin,unused-import
# ruff: noqa: F401
import os
import typing
from dataclasses import dataclass, field
import pandas as pd
import requests
import rich
import smolagents
import wikipediaapi
from loguru import logger
from mcp import StdioServerParameters
from smolagents import CodeAgent, DuckDuckGoSearchTool, FinalAnswerTool, Tool, ToolCollection, VisitWebpageTool
from smolagents import InferenceClientModel as HfApiModel
from get_model import get_model
from litellm_model import litellm_model
from openai_model import openai_model
console = rich.get_console()
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
SPACE_ID = os.getenv("SPACE_ID", "mikeee/final-assignment")
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
"io",
"glob",
"chess",
"speech_recognition",
"input",
"pandas.compat",
]
class WikipediaSearchTool(Tool):
name = "wikipedia_search"
description = "Fetches a summary of a Wikipedia page based on a given search query (only one word or group of words)."
inputs = {
"query": {"type": "string", "description": "The search term for the Wikipedia page (only one word or group of words)."}
}
output_type = "string"
def __init__(self, lang="en"):
super().__init__()
self.wiki = wikipediaapi.Wikipedia(
language=lang, user_agent="MinimalAgent/1.0")
def forward(self, query: str):
page = self.wiki.page(query)
if not page.exists():
return "No Wikipedia page found."
return page.summary[:1000]
@dataclass
class BasicAgent:
model: smolagents.models.Model = HfApiModel()
tools: list = field(default_factory=lambda: [])
verbosity_level: int = 0
additional_authorized_imports: list = field(default_factory=lambda: AUTHORIZED_IMPORTS)
planning_interval: int = 4
# def __init__(self):
def __post_init__(self):
"""Run post_init."""
logger.debug("BasicAgent initialized.")
self.agent = CodeAgent(
tools=self.tools,
model=self.model,
verbosity_level=self.verbosity_level,
additional_authorized_imports=self.additional_authorized_imports,
planning_interval=self.planning_interval,
)
def get_answer(self, question: str):
return f"ans to {question[:220]}..."
def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# print(f"Agent received question: {question}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
# return fixed_answer
try:
# answer = self.get_answer(question)
answer = self.agent.run(question)
except Exception as e:
logger.error(e)
answer = str(e)[:110] + "..."
return answer
def main():
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit" # noqa
# username = "mikeee"
# repo_name = "final-assignment"
username, _, repo_name = SPACE_ID.partition("/")
space_id = f"{username}/{repo_name}"
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions: fetch before openai_model() which my set proxy
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=120)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# model = get_model(cat="gemini")
_ = (
"gemini-2.5-flash-preview-04-17",
# "https://api-proxy.me/gemini/v1beta",
"https://generativelanguage.googleapis.com/v1beta",
os.getenv("GEMINI_API_KEY"),
)
_ = (
"grok-3-beta",
"https://api.x.ai/v1",
os.getenv("XAI_API_KEY"),
)
# model = litellm_model(*_)
# model = get_model()
model = openai_model() # defautl llama4 scout
# messages = [{'role': 'user', 'content': 'Say this is a test.'}]
# print(model(messages))
# raise SystemExit("By intention")
mcp_searxng_params = StdioServerParameters(
**{
"command": "npx",
"args": [
"-y",
"mcp-searxng"
],
"env": {
"SEARXNG_URL": os.getenv("SEARXNG_URL", "https://searx.be")
}
}
)
# with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection, ToolCollection.from_mcp(mcp_markitdown_params, trust_remote_code=True) as markitdown_tools:
with ToolCollection.from_mcp(mcp_searxng_params, trust_remote_code=True) as searxng_tool_collection:
# 1. Instantiate Agent ( modify this part to create your agent)
try:
# agent = BasicAgent()
agent = BasicAgent(
model=model,
tools=[
*searxng_tool_collection.tools,
# DuckDuckGoSearchTool(),
VisitWebpageTool(),
WikipediaSearchTool(),
FinalAnswerTool(),
],
# verbosity_level=1,
)
agent.agent.visualize()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for idx, item in enumerate(questions_data):
# for item in questions_data[-1:]:
# for item in questions_data[14:15]:
# for item in questions_data[-6:]:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
print(f"{idx=} {'*' * 20}")
print([submitted_answer, question_text])
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} # noqa
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(answers_payload)
agent.agent.visualize()
return None, None
if __name__ == "__main__":
main()