Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as grad
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
def load_prompter():
|
6 |
+
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
8 |
+
tokenizer.pad_token = tokenizer.eos_token
|
9 |
+
tokenizer.padding_side = "left"
|
10 |
+
return prompter_model, tokenizer
|
11 |
+
|
12 |
+
prompter_model, prompter_tokenizer = load_prompter()
|
13 |
+
|
14 |
+
def generate(plain_text):
|
15 |
+
input_ids = prompter_tokenizer(plain_text.strip()+" Rephrase:", return_tensors="pt").input_ids
|
16 |
+
eos_id = prompter_tokenizer.eos_token_id
|
17 |
+
outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=8, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0)
|
18 |
+
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
19 |
+
res = output_texts[0].replace(plain_text+" Rephrase:", "").strip()
|
20 |
+
print("[I] Prompter input: %s" % plain_text)
|
21 |
+
print("[I] Prompter output: %s \n------------\n" % res)
|
22 |
+
return res
|
23 |
+
|
24 |
+
txt = grad.Textbox(lines=1, label="Initial Text", placeholder="Input Prompt")
|
25 |
+
out = grad.Textbox(lines=1, label="Optimized Prompt")
|
26 |
+
|
27 |
+
grad.Interface(fn=generate,
|
28 |
+
inputs=txt,
|
29 |
+
outputs=out,
|
30 |
+
title="Promptist",
|
31 |
+
allow_flagging='never',
|
32 |
+
cache_examples=False,
|
33 |
+
theme="default").launch(enable_queue=True, share=True, debug=True)
|