Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
import inspect | |
import json | |
import os | |
from importlib import import_module | |
from transformers.models.llama.modeling_llama import * | |
from transformers.utils.import_utils import _is_package_available | |
if _is_package_available("vllm"): | |
from vllm.attention.backends.flash_attn import * | |
from ..ops.block_sparse_flash_attention import block_sparse_attention | |
from ..ops.pit_sparse_flash_attention_v2 import vertical_slash_sparse_attention | |
from ..ops.streaming_kernel import streaming_forward, streaming_forward2 | |
from .snap_kv import * | |
last_q = 64 | |
arange = torch.arange(last_q, device="cuda") | |
LAST_Q_MASK = arange[None, None, :, None] >= arange[None, None, None, :] | |
ROPE_TYPE = None | |
SEARCH_MASK = None | |
def init_minference_parameters(self): | |
config = self.config.to_dict() | |
self.starting_layer = config.get("starting_layer", 0) | |
self.is_search = config.get("is_search", False) | |
# self.n_init = config.get("n_init", 128) | |
# self.n_local = config.get("n_local", 3968) | |
self.ne_inf = None | |
self.config_path = config.get("config_path", "") | |
if os.path.exists(self.config_path) and self.layer_idx < len(json.load(open(self.config_path))): | |
self.best_pattern = {int(ii): jj for ii, jj in json.load(open(self.config_path))[self.layer_idx].items()} | |
else: | |
self.best_pattern = {} | |
self.vertical, self.slash = None, None | |
# import apply_rotary_pos_emb | |
if "apply_rotary_pos_emb" not in self.__dict__: | |
global apply_rotary_pos_emb | |
model_path = self.rotary_emb.__class__.__module__ | |
apply_rotary_pos_emb = getattr(import_module(model_path), "apply_rotary_pos_emb") | |
self.apply_rotary_pos_emb = True | |
def sum_all_diagonal_matrix(mat: torch.tensor): | |
b, h, n, m = mat.shape | |
zero_mat = torch.zeros((b, h, n, n)).to(mat.device) # Zero matrix used for padding | |
mat_padded = torch.cat((zero_mat, mat, zero_mat), -1) # pads the matrix on left and right | |
mat_strided = mat_padded.as_strided((1, 1, n, n + m), (1, n * (2 * n + m), 2 * n + m + 1, 1)) # Change the strides | |
sum_diags = torch.sum(mat_strided, 2) # Sums the resulting matrix's columns | |
return sum_diags[:,:,1:] | |
def gather(t, dim, i): | |
"""A broadcasting version of torch.gather.""" | |
dim += (dim < 0) * t.ndim | |
return t.gather(dim, i.expand(*t.shape[:dim], i.shape[dim], *t.shape[dim + 1 :])) | |
def gather_qkv(q, k, v, attention_mask): | |
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(q.size(-1)) + attention_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) | |
attn_output = torch.matmul(attn_weights, v) | |
return attn_output | |
def search_pattern(q, k, head): | |
q_len = q.shape[2] | |
head_dim = q.shape[-1] | |
def vertical_and_slash(vertical_size, slash_size): | |
last_q = 64 | |
q_len = q.shape[2] | |
qk_idxs = [ii + q_len for ii in list(range(-last_q, 0, 1))] | |
qk = torch.matmul(q[:,:,qk_idxs,:], k.transpose(2, 3))/ math.sqrt(head_dim) + attention_mask[:,:,qk_idxs] | |
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) | |
vertical = qk.sum(-2, keepdim=True) | |
vertical[...,:30] = 10000 | |
vertical_topk = torch.topk(-vertical, q_len - vertical_size, -1).indices | |
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] | |
slash[...,-30:] = 10000 | |
slash_topk = slash | |
slash = torch.topk(slash, slash_size, -1).indices - (q_len - 1) | |
slash = torch.stack([torch.sparse.spdiags(torch.ones(slash_size, q_len), slash.cpu()[0][_], (q_len, q_len)).to_dense() for _ in range(1)]).to(q.device) | |
est_attn = torch.ones_like(attn_weights) | |
dim = 3 | |
est_attn = est_attn.scatter(3, vertical_topk.expand(*est_attn.shape[:dim], vertical_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0) | |
est_attn = est_attn + slash | |
est_attn = (est_attn > 0).float() | |
est_attn = torch.tril(est_attn) | |
attn_weights_x = attn_weights * est_attn | |
res3 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy() | |
return res3 | |
def stream_llm(vertical_size, slash_size): | |
q_len = q.shape[2] | |
mask = torch.triu(torch.tril(torch.ones(q_len, q_len), 0), -slash_size).to(q) | |
mask[:,:vertical_size] = 1 | |
mask = mask.unsqueeze(0).unsqueeze(1) | |
est_attn = torch.tril(mask) | |
attn_weights_x = attn_weights * est_attn | |
res3 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy() | |
return res3 | |
def block_sparse(topk_ratio, slash_size=None): | |
block_num = (q_len -1) // 32 + 1 | |
block_q = torch.zeros(1,1,block_num * 32,head_dim).to(q) | |
block_q[:,:,:q_len] = q | |
block_q = block_q.reshape(1,1,block_num,32,-1).mean(-2) | |
block_k = torch.zeros(1,1,block_num * 32,head_dim).to(k) | |
block_k[:,:,:q_len] = k | |
block_k = block_k.reshape(1,1,block_num,32,-1).mean(-2) | |
qk = torch.matmul(block_q, block_k.transpose(2, 3)) + attention_mask[:,:,:block_num,:block_num] | |
est_attn = torch.ones_like(qk) | |
block_topk = torch.topk(-qk, block_num - block_num//topk_ratio, -1).indices | |
dim = 3 | |
est_attn = est_attn.scatter(3, block_topk.expand(*est_attn.shape[:dim], block_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0) | |
est_attn = est_attn.unsqueeze(3).unsqueeze(-1).repeat(1,1,1,32,1,32).reshape(1,1,block_num * 32, block_num * 32)[...,:q_len,:q_len] | |
est_attn = torch.tril(est_attn) | |
attn_weights_x = attn_weights * est_attn | |
res2 = attn_weights_x[:,:,2500:].sum(-1).mean(-1).squeeze().float().detach().cpu().numpy() | |
return res2 | |
global SEARCH_MASK | |
if SEARCH_MASK is None: | |
attention_mask = torch.full((q_len, q_len), torch.finfo(q.dtype).min, device="cuda") | |
mask_cond = torch.arange(attention_mask.size(-1), device="cuda") | |
attention_mask.masked_fill_(mask_cond < (mask_cond + 1).view(attention_mask.size(-1), 1), 0) | |
attention_mask = attention_mask[None, None, :] | |
SEARCH_MASK = attention_mask | |
else: | |
attention_mask = SEARCH_MASK | |
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(head_dim) + attention_mask | |
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype) | |
best_s, best_v, best_score, best_ty = 0, 0, 0, "" | |
all_info = [] | |
for ty, fc in [("stream_llm", stream_llm), ("vertical_and_slash", vertical_and_slash), ("block_sparse", block_sparse)]: | |
if ty == "stream_llm": | |
vs_list = [(100, 800)] | |
elif ty == "vertical_and_slash": | |
vs_list = [(30, 800), (100, 750), (500, 700), (3500, 100)] | |
else: | |
vs_list = [(8, 1)] | |
for v_size, s_size in vs_list: | |
score = fc(v_size, s_size) | |
score = score.item() | |
all_info.append([ty, v_size, s_size, score]) | |
if score > best_score: | |
best_score = score | |
best_s, best_v = s_size, v_size | |
best_ty = ty | |
if best_ty == "stream_llm": | |
best_ty = "vertical_and_slash" | |
if best_ty == "block_sparse": | |
best_ty, best_v, best_s = "vertical_and_slash", 1000, 6096 | |
print(head, best_ty, best_v, best_s, best_score) | |
return (best_ty, best_v, best_s, best_score) | |
def search_pattern_v2(q, k, v, head): | |
q_len = q.shape[2] | |
head_dim = q.shape[-1] | |
def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size): | |
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) | |
last_q = 64 | |
qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k) | |
qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK, qk[:, :, :, -last_q:], -torch.inf) | |
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) | |
vertical = qk.sum(-2, keepdim=True) | |
vertical[...,:30] = torch.inf | |
vertical_topk = torch.topk(vertical, vertical_size, -1).indices | |
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] | |
slash[...,-30:] = torch.inf | |
slash_topk = slash | |
slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices | |
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) | |
def dense(q, k, v, vertical_size=None, slash_size=None): | |
return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, head_dim) | |
def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None): | |
topk = 100 | |
return block_sparse_attention(q, k, v, topk) | |
best_s, best_v, best_score, best_ty = 0, 0, float("inf"), "" | |
bsz = q.shape[0] | |
all_info = [] | |
ref = dense(q, k, v) | |
for ty, fc in [("stream_llm", streaming_forward), ("vertical_and_slash", vertical_and_slash_kernel), ("block_sparse", block_sparse_kernel)]: | |
if ty == "stream_llm": | |
vs_list = [(100, 800)] | |
elif ty == "vertical_and_slash": | |
vs_list = [(30, 800), (100, 800), (100, 750), (500, 700), (3500, 100), (1000, 4096)] | |
else: | |
vs_list = [(10, 1)] | |
for v_size, s_size in vs_list: | |
score = fc(q, k, v, v_size, s_size) | |
# delta = (ref - score).abs().sum() | |
delta = ((ref - score).abs() > 5e-3).sum() | |
score = delta.item() | |
all_info.append([ty, v_size, s_size, score]) | |
if score < best_score: | |
best_score = score | |
best_s, best_v = s_size, v_size | |
best_ty = ty | |
print(head, best_ty, best_v, best_s, best_score) | |
return all_info | |
def shift_matrix(mat): | |
b, h, _, n = mat.shape | |
zero_mat = torch.zeros((b, h, n, n)).to(mat.device) # Zero matrix used for padding | |
mat_padded = torch.cat((zero_mat, mat, zero_mat), -1) # pads the matrix on left and right | |
mat_strided = mat_padded.as_strided((1, 1, n, n + 2 * n), (1, n * (2 * n + n), 2 * n + n - 1, 1)) # Change the strides | |
return mat_strided[...,2 * n-1:-1] | |
def repeat(self, q, k, v, attention_mask): | |
q_len = q.shape[2] | |
if q_len == 1: | |
return gather_qkv(q, k, v, attention_mask) | |
qk = torch.matmul(q[:,:,-1:,:], k.transpose(2, 3)) / math.sqrt(self.head_dim) | |
qk = qk.repeat(1,1,q_len, 1) | |
qk = shift_matrix(qk) + attention_mask | |
attn_weights = nn.functional.softmax(qk, dim=-1, dtype=torch.float32).to(q.dtype) | |
attn_output = torch.matmul(attn_weights, v) | |
return attn_output | |
def gather_last_q_vertical_slash_topk_v4(self, q, k, v, head_id): | |
kv_seq_len = k.size(2) | |
def vertical_and_slash(attn_weights, vertical_size, slash_size): | |
last_q = 64 | |
q_len = q.shape[2] | |
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) | |
qk_idxs = [ii + q_len for ii in list(range(-last_q, 0, 1))] | |
qk = torch.matmul(q[:,:,qk_idxs,:], k.transpose(2, 3))/ math.sqrt(self.head_dim) + attention_mask[:,:,qk_idxs] | |
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) | |
vertical = qk.sum(-2, keepdim=True) | |
vertical[...,:30] = -self.ne_inf | |
vertical_topk = torch.topk(-vertical, q_len - vertical_size, -1).indices | |
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] | |
slash[...,-30:] = -self.ne_inf | |
slash_topk = slash | |
slash = torch.topk(slash, slash_size, -1).indices - (q_len - 1) | |
slash = torch.stack([torch.sparse.spdiags(torch.ones(slash_size, q_len), slash.cpu()[0][_], (q_len, q_len)).to_dense() for _ in range(1)]).to(q.device) | |
est_attn = torch.ones_like(attn_weights) | |
dim = 3 | |
est_attn = est_attn.scatter(3, vertical_topk.expand(*est_attn.shape[:dim], vertical_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0) | |
est_attn = est_attn + slash | |
est_attn = (est_attn > 0).float() | |
est_attn = torch.tril(est_attn) | |
est_attn = (est_attn == 0).int() * self.ne_inf | |
attn_weights = attn_weights + est_attn | |
if self.kv_cache_compressed_v4: | |
self.vertical = torch.topk(vertical, vertical_size * 4, -1).indices | |
self.slash = (torch.topk(slash_topk, slash_size * 4, -1).indices - (q_len - 1)).unsqueeze(2) | |
return attn_weights | |
def stream_llm(attn_weights, vertical_size, slash_size): | |
q_len = q.shape[2] | |
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) | |
mask = torch.triu(torch.tril(torch.ones(q_len, q_len), 0), -slash_size).to(q) | |
mask[:,:vertical_size] = 1 | |
mask = mask.unsqueeze(0).unsqueeze(1) | |
est_attn = torch.tril(mask) | |
est_attn = (est_attn == 0).int() * self.ne_inf | |
attn_weights = attn_weights + est_attn | |
if self.kv_cache_compressed_v4: | |
self.vertical = torch.Tensor(list(range(vertical_size * 4))).long().to(q.device).unsqueeze(0).unsqueeze(0).unsqueeze(0) | |
self.slash = torch.Tensor(list(range(-slash_size * 4, 1))).long().to(q.device).unsqueeze(0).unsqueeze(0).unsqueeze(0) | |
return attn_weights | |
def block_sparse(attn_weights, topk_ratio, slash_size=None, block_size=8): | |
block_num = (q_len -1) // block_size + 1 | |
block_q = torch.zeros(1,1,block_num * block_size,head_dim).to(q) | |
block_q[:,:,:q_len] = q | |
block_q = block_q.reshape(1,1,block_num,block_size,-1).mean(-2) | |
block_k = torch.zeros(1,1,block_num * block_size,head_dim).to(k) | |
block_k[:,:,:q_len] = k | |
block_k = block_k.reshape(1,1,block_num,block_size,-1).mean(-2) | |
qk = torch.matmul(block_q, block_k.transpose(2, 3)) + attention_mask[:,:,:block_num,:block_num] | |
est_attn = torch.ones_like(qk) | |
block_topk = torch.topk(-qk, block_num - block_num//topk_ratio, -1).indices | |
dim = 3 | |
est_attn = est_attn.scatter(3, block_topk.expand(*est_attn.shape[:dim], block_topk.shape[dim], *est_attn.shape[dim + 1 :]), 0) | |
est_attn = est_attn.unsqueeze(3).unsqueeze(-1).repeat(1,1,1,block_size,1,block_size).reshape(1,1,block_num * block_size, block_num * block_size)[...,:q_len,:q_len] | |
est_attn = torch.tril(est_attn) | |
est_attn = (est_attn == 0).int() | |
attn_weights = attn_weights + est_attn | |
return attn_weights | |
def dialted(q,k,v, type): | |
q_len = q.shape[2] | |
n_init = min(1024, q_len) | |
vertical_topk = torch.arange(0, n_init, device=q.device)[None, None, None, :] | |
slash = torch.arange(0, q_len, device=q.device) | |
if type == 'dilated1': | |
# 8k local with 1 interval | |
slash = slash[-8192::2][None, None, :] | |
elif type == 'dilated2': | |
# 2k dense local + 4k local with 1 interval | |
slash = torch.cat([slash[-2048:], slash[-6144:-2048:2]], 0)[None, None, :] | |
slash = (q_len - 1) - slash | |
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) | |
def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size): | |
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) | |
last_q = min(64, q_len) | |
qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k) | |
qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK[...,-last_q:,-last_q:].to(q.device), qk[:, :, :, -last_q:], -torch.inf) | |
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) | |
vertical = qk.sum(-2, keepdim=True) | |
vertical[...,:30] = torch.inf | |
vertical_topk = torch.topk(vertical, vertical_size, -1).indices | |
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] | |
slash[...,-100:] = torch.inf | |
slash_topk = slash | |
slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices | |
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) | |
def vertical_and_slash_kernel_static(q, k, v, vertical_size, slash_size): | |
if "vs" in self.__dict__: | |
vertical_topk, slash = self.vs | |
else: | |
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) | |
last_q = 64 | |
qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k) | |
qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK, qk[:, :, :, -last_q:], -torch.inf) | |
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) | |
vertical = qk.sum(-2, keepdim=True) | |
vertical[...,:30] = torch.inf | |
vertical_topk = torch.topk(vertical, vertical_size, -1).indices | |
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] | |
slash[...,-30:] = torch.inf | |
slash_topk = slash | |
slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices | |
self.vs = vertical_topk, slash | |
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) | |
def dense(q, k, v, vertical_size=None, slash_size=None): | |
return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, self.head_dim) | |
def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None): | |
topk = 100 | |
return block_sparse_attention(q, k, v, topk) | |
q_len = q.shape[2] | |
bsz = q.shape[0] | |
if self.config.to_dict().get("dilated1", False): | |
return dialted(q, k, v, 'dilated1') | |
if self.config.to_dict().get("dilated2", False): | |
return dialted(q, k, v, 'dilated2') | |
if self.config.to_dict().get("dense", False): | |
return dense(q, k, v) | |
if self.config.to_dict().get("streaming", False): | |
return streaming_forward(q, k, v, self.config.streaming_kwargs["n_init"], self.config.streaming_kwargs["n_local"]) | |
ty, vertical_size, slash_size, _ = self.best_pattern.get(head_id, ("vertical_and_slash", 1000, 6096, 1)) | |
if self.config.to_dict().get("static_pattern", False): | |
return vertical_and_slash_kernel_static(q, k, v, vertical_size, slash_size) | |
if self.config.to_dict().get("vs_only", False): | |
return vertical_and_slash_kernel(q, k, v, vertical_size, slash_size) | |
if q_len == 1: | |
return dense(q, k, v) | |
fc = { | |
"stream_llm": streaming_forward, | |
"vertical_and_slash": vertical_and_slash_kernel, | |
"block_sparse": block_sparse_kernel, | |
}[ty] | |
return fc(q, k, v, vertical_size, slash_size) | |
def apply_rotary_pos_emb_single(q, cos, sin, position_ids, unsqueeze_dim=1): | |
# cos = cos[position_ids].unsqueeze(unsqueeze_dim) | |
# sin = sin[position_ids].unsqueeze(unsqueeze_dim) | |
cos = cos.unsqueeze(unsqueeze_dim) | |
sin = sin.unsqueeze(unsqueeze_dim) | |
return (q * cos) + (rotate_half(q) * sin) | |
def minference_forward(): | |
def forward( | |
self, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_value, | |
output_attentions, | |
use_cache, | |
**kwargs, | |
): | |
self.init_minference_parameters() | |
self.ne_inf = torch.finfo(hidden_states.dtype).min | |
bsz, q_len, _ = hidden_states.size() | |
if "q_proj" in self.__dict__["_modules"]: | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
else: | |
qkv = self.qkv_proj(hidden_states) | |
query_pos = self.num_heads * self.head_dim | |
query_states, key_states, value_states = torch.split(qkv, query_pos, -1) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
global ROPE_TYPE | |
if ROPE_TYPE is None: | |
ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters | |
if ROPE_TYPE: | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
else: | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
if self.is_search: | |
if os.path.exists(self.config_path): | |
config_list = json.load(open(self.config_path)) | |
if self.layer_idx < len(config_list): | |
assert False | |
else: | |
config_list = [] | |
config = {} | |
print("Layer", self.layer_idx) | |
if q_len != 1: | |
output = torch.empty_like(query_states) | |
for head in range(query_states.size(1)): | |
q = query_states[:, head, :, :].unsqueeze(1) | |
k = key_states[:, head, :, :].unsqueeze(1) | |
v = value_states[:, head, :, :].unsqueeze(1) | |
if self.is_search: | |
config[head] = search_pattern(q, k, head) | |
if self.layer_idx >= self.starting_layer and not self.is_search: | |
attn_output = self.gather_last_q_vertical_slash_topk_v4(q, k, v, head) | |
elif is_flash_attn_2_available(): | |
attn_output = flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, self.head_dim) | |
else: | |
attn_output = gather_qkv(q, k, v, attention_mask) | |
output[:, head:head + 1] = attn_output | |
if self.is_search: | |
config_list.append(config) | |
with open(self.config_path, 'w') as json_file: | |
json.dump(config_list, json_file) | |
else: | |
output = flash_attn_func(query_states.transpose(1, 2), key_states.transpose(1, 2), value_states.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, query_states.size(1), q_len, self.head_dim) | |
attn_output = output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
return forward | |
def minference_kv_cache_cpu_forward(): | |
def forward( | |
self, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_value, | |
output_attentions, | |
use_cache, | |
**kwargs, | |
): | |
self.init_minference_parameters() | |
self.ne_inf = torch.finfo(hidden_states.dtype).min | |
bsz, q_len, hidden_dim = hidden_states.size() | |
kv_seq_len = q_len | |
if use_cache and past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
global ROPE_TYPE | |
if ROPE_TYPE is None: | |
ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters | |
if ROPE_TYPE: | |
cos, sin = self.rotary_emb(hidden_states, seq_len=kv_seq_len) | |
else: | |
cos, sin = self.rotary_emb(hidden_states, position_ids) | |
cache_kwargs = {"sin": sin, "cos": cos} | |
attn_out = torch.empty_like(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim) | |
act_num_heads = self.num_heads // self.num_key_value_groups | |
if use_cache: | |
k = torch.zeros(bsz, act_num_heads, q_len, self.head_dim).to(hidden_states.dtype).cpu() | |
v = torch.zeros(bsz, act_num_heads, q_len, self.head_dim).to(hidden_states.dtype).cpu() | |
part_k, part_v = None, None | |
for head in range(self.num_heads): | |
if "q_proj" in self.__dict__["_modules"]: | |
part_q = F.linear(hidden_states, self.q_proj.weight.view(self.num_heads, self.head_dim, hidden_dim)[head]).unsqueeze(2) | |
else: | |
part_q = F.linear(hidden_states, self.qkv_proj.weight.view(3, self.num_heads, self.head_dim, hidden_dim)[0][head]).unsqueeze(2) | |
part_q = apply_rotary_pos_emb_single(part_q.transpose(1, 2), cos, sin, position_ids) | |
if head % self.num_key_value_groups == 0: | |
if "q_proj" in self.__dict__["_modules"]: | |
part_k = F.linear(hidden_states, self.k_proj.weight.view(act_num_heads, self.head_dim, hidden_dim)[head // self.num_key_value_groups]).unsqueeze(2) | |
part_v = F.linear(hidden_states, self.v_proj.weight.view(act_num_heads, self.head_dim, hidden_dim)[head // self.num_key_value_groups]).unsqueeze(2).transpose(1, 2) | |
else: | |
part_k = F.linear(hidden_states, self.qkv_proj.weight.view(3, act_num_heads, self.head_dim, hidden_dim)[1][head // self.num_key_value_groups]).unsqueeze(2) | |
part_v = F.linear(hidden_states, self.qkv_proj.weight.view(3, act_num_heads, self.head_dim, hidden_dim)[2][head // self.num_key_value_groups]).unsqueeze(2).transpose(1, 2) | |
part_k = apply_rotary_pos_emb_single(part_k.transpose(1, 2), cos, sin, position_ids) | |
if use_cache and past_key_value is not None: | |
k[:,head // self.num_key_value_groups] = part_k.cpu() | |
v[:,head // self.num_key_value_groups] = part_v.cpu() | |
part_k, part_v = past_key_value.get(part_k, part_v, self.layer_idx, head // self.num_key_value_groups, cache_kwargs) | |
if self.layer_idx >= self.starting_layer: | |
part_o = self.gather_last_q_vertical_slash_topk_v4(part_q, part_k, part_v, head) | |
else: | |
part_o = flash_attn_func(part_q, part_k, part_v.transpose(1, 2), 0.0, softmax_scale=None, causal=True).view(bsz, part_q.shape[1], self.head_dim) | |
attn_out[:, :, head, :] = part_o | |
if use_cache and past_key_value is not None: | |
past_key_value.update(k, v, self.layer_idx, cache_kwargs) | |
torch.matmul(attn_out.view(bsz, q_len, hidden_dim), self.o_proj.weight.T, out=hidden_states) | |
torch.cuda.empty_cache() | |
return (hidden_states, None, past_key_value) | |
return forward | |
def minference_with_snapkv_forward(): | |
def forward( | |
self, | |
hidden_states, | |
attention_mask, | |
position_ids, | |
past_key_value, | |
output_attentions, | |
use_cache, | |
**kwargs, | |
): | |
self.init_minference_parameters() | |
self.ne_inf = torch.finfo(hidden_states.dtype).min | |
init_snapkv(self) | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
if self.layer_idx is None: | |
raise ValueError( | |
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | |
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | |
"with a layer index." | |
) | |
if hasattr(self, "kv_seq_len"): #[SnapKV] add kv_seq_len | |
if self.kv_seq_len != 0: | |
kv_seq_len += self.kv_seq_len | |
else: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
else: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
global ROPE_TYPE | |
if ROPE_TYPE is None: | |
ROPE_TYPE = "seq_len" in inspect.signature(self.rotary_emb.forward).parameters | |
if ROPE_TYPE: | |
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | |
else: | |
cos, sin = self.rotary_emb(value_states, position_ids) | |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
if past_key_value is not None: | |
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models | |
if key_states.shape[-2] == kv_seq_len: # [SnapKV] add kv_cluster | |
self.kv_seq_len = kv_seq_len # [SnapKV] register kv_seq_len | |
key_states_compress, value_states_compress = self.kv_cluster.update_kv(key_states, query_states, value_states, attention_mask, self.num_key_value_groups) | |
past_key_value.update(key_states_compress, value_states_compress, self.layer_idx, cache_kwargs) | |
else: | |
self.kv_seq_len += q_len | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
if self.layer_idx >= self.starting_layer: | |
assert query_states.size(1) == key_states.size(1) == value_states.size(1) | |
output = torch.empty_like(query_states) | |
for head in range(query_states.size(1)): | |
q = query_states[:, head, :, :].unsqueeze(1) | |
k = key_states[:, head, :, :].unsqueeze(1) | |
v = value_states[:, head, :, :].unsqueeze(1) | |
output[:, head:head + 1] = self.gather_last_q_vertical_slash_topk_v4(q, k, v, head) | |
attn_output = output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
else: | |
output = torch.empty_like(query_states) | |
for head in range(query_states.size(1)): | |
q = query_states[:, head, :, :].unsqueeze(1) | |
k = key_states[:, head, :, :].unsqueeze(1) | |
v = value_states[:, head, :, :].unsqueeze(1) | |
if is_flash_attn_2_available(): | |
attn_output = flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q.shape[2], self.head_dim) | |
else: | |
attn_output = gather_qkv(q, k, v, attention_mask) | |
output[:, head:head + 1] = attn_output | |
attn_output = output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | |
attn_output = self.o_proj(attn_output) | |
return attn_output, None, past_key_value | |
return forward | |
def gather_last_q_vertical_slash_topk_vllm(self, q, k, v, head_id): | |
kv_seq_len = k.size(2) | |
head_dim = q.size(-1) | |
def vertical_and_slash_kernel(q, k, v, vertical_size, slash_size): | |
vertical_size, slash_size = min(q_len, max(vertical_size, 30)), min(q_len, max(slash_size, 50)) | |
last_q = min(64, q_len) | |
qk = torch.einsum(f'bhmk, bhnk -> bhmn', q[:,:,-last_q:,:], k) | |
qk[:, :, :, -last_q:] = torch.where(LAST_Q_MASK[...,-last_q:,-last_q:], qk[:, :, :, -last_q:], -torch.inf) | |
qk = torch.nn.functional.softmax(qk, dim=-1, dtype=torch.float32) | |
vertical = qk.sum(-2, keepdim=True) | |
vertical[...,:30] = torch.inf | |
vertical_topk = torch.topk(vertical, vertical_size, -1).indices | |
slash = sum_all_diagonal_matrix(qk)[...,:-last_q + 1] | |
slash[...,-100:] = torch.inf | |
slash_topk = slash | |
slash = (q_len - 1) - torch.topk(slash, slash_size, -1).indices | |
return vertical_slash_sparse_attention(q, k, v, vertical_topk, slash) | |
def block_sparse_kernel(q, k, v, vertical_size=None, slash_size=None): | |
topk = 100 | |
return block_sparse_attention(q, k, v, topk) | |
def dense(q, k, v, vertical_size=None, slash_size=None): | |
return flash_attn_func(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1,2), 0.0, softmax_scale=None, causal=q_len != 1).view(bsz, 1, q_len, head_dim) | |
q_len = q.shape[2] | |
bsz = q.shape[0] | |
ty, vertical_size, slash_size, _ = self.best_pattern[head_id] | |
if q_len == 1: | |
return dense(q, k, v) | |
fc = { | |
"stream_llm": streaming_forward, | |
"vertical_and_slash": vertical_and_slash_kernel, | |
"block_sparse": block_sparse_kernel, | |
}[ty] | |
return fc(q, k, v, vertical_size, slash_size) | |
def minference_vllm_forward( | |
pattern_config | |
): | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
kv_cache: torch.Tensor, | |
attn_metadata: AttentionMetadata[FlashAttentionMetadata], | |
kv_scale: float, | |
layer_idx: int, | |
) -> torch.Tensor: | |
"""Forward pass with FlashAttention and PagedAttention. | |
Args: | |
query: shape = [num_tokens, num_heads * head_size] | |
key: shape = [num_tokens, num_kv_heads * head_size] | |
value: shape = [num_tokens, num_kv_heads * head_size] | |
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size] | |
attn_metadata: Metadata for attention. | |
Returns: | |
shape = [num_tokens, num_heads * head_size] | |
""" | |
self.best_pattern = {int(ii): jj for ii, jj in pattern_config[layer_idx].items()} | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
slen, num_key_value_heads, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, None, :, :].expand(slen, n_rep, num_key_value_heads, head_dim) | |
return hidden_states.reshape(slen, num_key_value_heads * n_rep, head_dim) | |
def minference_prefill_func( | |
q, k, v, | |
): | |
# (seq_len, num_heads, head_size) | |
if q.size(-2) != k.size(-2): | |
k = repeat_kv(k, q.size(-2) // k.size(-2)) | |
v = repeat_kv(v, q.size(-2) // v.size(-2)) | |
output = torch.empty_like(q) | |
for head in range(q.size(-2)): | |
q_head = q[:, head, :].unsqueeze(1) | |
k_head = k[:, head, :].unsqueeze(1) | |
v_head = v[:, head, :].unsqueeze(1) | |
# (1, seq_len, num_heads, head_size) | |
q_head = q_head[None, ...] | |
k_head = k_head[None, ...] | |
v_head = v_head[None, ...] | |
q_head = q_head.transpose(1, 2) | |
k_head = k_head.transpose(1, 2) | |
v_head = v_head.transpose(1, 2) | |
out = self.gather_last_q_vertical_slash_topk_vllm(q_head, k_head, v_head, head) | |
out = out.transpose(1, 2).squeeze(0).contiguous() | |
output[:, head:head+1, :] = out | |
return output | |
num_tokens, hidden_size = query.shape | |
# Reshape the query, key, and value tensors. | |
query = query.view(-1, self.num_heads, self.head_size) | |
key = key.view(-1, self.num_kv_heads, self.head_size) | |
value = value.view(-1, self.num_kv_heads, self.head_size) | |
if kv_cache is not None: | |
key_cache, value_cache = PagedAttention.split_kv_cache( | |
kv_cache, self.num_kv_heads, self.head_size) | |
# Reshape the input keys and values and store them in the cache. | |
# If kv_cache is not provided, the new key and value tensors are | |
# not cached. This happens during the initial memory profiling run. | |
PagedAttention.write_to_paged_cache(key, value, key_cache, | |
value_cache, | |
attn_metadata.slot_mapping, | |
attn_metadata.kv_cache_dtype, | |
kv_scale) | |
num_prefill_tokens = attn_metadata.num_prefill_tokens | |
num_decode_tokens = attn_metadata.num_decode_tokens | |
assert key.shape[0] == num_prefill_tokens + num_decode_tokens | |
assert value.shape[0] == num_prefill_tokens + num_decode_tokens | |
output = torch.empty_like(query) | |
# Query for decode. KV is not needed because it is already cached. | |
decode_query = query[num_prefill_tokens:] | |
# QKV for prefill. | |
query = query[:num_prefill_tokens] | |
key = key[:num_prefill_tokens] | |
value = value[:num_prefill_tokens] | |
assert query.shape[0] == num_prefill_tokens | |
assert decode_query.shape[0] == num_decode_tokens | |
if prefill_meta := attn_metadata.prefill_metadata: | |
# Prompt run. | |
if kv_cache is None or prefill_meta.block_tables.numel() == 0: | |
# normal attention | |
# When block_tables are not filled, it means q and k are the | |
# prompt, and they have the same length. | |
# (seq_len, num_heads, head_size) | |
# out = flash_attn_varlen_func( | |
# q=query, | |
# k=key, | |
# v=value, | |
# cu_seqlens_q=prefill_meta.seq_start_loc, | |
# cu_seqlens_k=prefill_meta.seq_start_loc, | |
# max_seqlen_q=prefill_meta.max_prompt_len, | |
# max_seqlen_k=prefill_meta.max_prompt_len, | |
# softmax_scale=self.scale, | |
# causal=True, | |
# window_size=self.sliding_window, | |
# alibi_slopes=self.alibi_slopes, | |
# ) | |
out = minference_prefill_func(query, key, value) | |
assert output[:num_prefill_tokens].shape == out.shape | |
output[:num_prefill_tokens] = out | |
else: | |
# prefix-enabled attention | |
# TODO(Hai) this triton kernel has regression issue (broke) to | |
# deal with different data types between KV and FP8 KV cache, | |
# to be addressed separately. | |
output[:num_prefill_tokens] = PagedAttention.forward_prefix( | |
query, | |
key, | |
value, | |
key_cache, | |
value_cache, | |
prefill_meta.block_tables, | |
prefill_meta.subquery_start_loc, | |
prefill_meta.prompt_lens_tensor, | |
prefill_meta.context_lens, | |
prefill_meta.max_subquery_len, | |
self.alibi_slopes, | |
) | |
if decode_meta := attn_metadata.decode_metadata: | |
# Decoding run. | |
output[num_prefill_tokens:] = PagedAttention.forward_decode( | |
decode_query, | |
key_cache, | |
value_cache, | |
decode_meta.block_tables, | |
decode_meta.context_lens, | |
decode_meta.max_context_len, | |
attn_metadata.kv_cache_dtype, | |
self.num_kv_heads, | |
self.scale, | |
self.alibi_slopes, | |
kv_scale, | |
) | |
# Reshape the output tensor. | |
return output.view(num_tokens, hidden_size) | |
return forward | |