MInference / minference /ops /pit_sparse_flash_attention_v2.py
iofu728's picture
Feature(MInference): fix the func name
b215053
raw
history blame
No virus
30.3 kB
import torch
import numpy as np
import math
import triton
import triton.language as tl
import pycuda.autoprimaryctx
from pycuda.compiler import SourceModule
from flash_attn import flash_attn_varlen_func
# @triton.autotune(
# configs=[
# triton.Config({}, num_stages=1, num_warps=4),
# triton.Config({}, num_stages=1, num_warps=8),
# triton.Config({}, num_stages=2, num_warps=4),
# triton.Config({}, num_stages=2, num_warps=8),
# triton.Config({}, num_stages=3, num_warps=4),
# triton.Config({}, num_stages=3, num_warps=8),
# triton.Config({}, num_stages=4, num_warps=4),
# triton.Config({}, num_stages=4, num_warps=8),
# triton.Config({}, num_stages=5, num_warps=4),
# triton.Config({}, num_stages=5, num_warps=8),
# ],
# key=['N_CTX'],
# )
@triton.jit
def triton_sparse_fwd_kernel(
Q, K, V, seqlens, sm_scale,
block_count, block_offset, column_count, column_index,
Out,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vn, stride_vk,
stride_oz, stride_oh, stride_om, stride_ok,
Z, H, N_CTX,
NUM_ROWS, NNZ_S, NNZ_V,
BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
dtype: tl.constexpr,
):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
seqlen = tl.load(seqlens + off_hz // H)
if start_m * BLOCK_M >= seqlen:
return
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh
kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh
q_ptrs = Q + qo_offset + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk
k_ptrs = K + kv_offset + offs_d[:, None] * stride_kk
v_ptrs = V + kv_offset + offs_d[None, :] * stride_vk
o_ptrs = Out + qo_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_ok
num_blks = tl.load(block_count + off_hz * NUM_ROWS + start_m)
blks_ptr = block_offset + (off_hz * NUM_ROWS + start_m) * NNZ_S
num_cols = tl.load(column_count + off_hz * NUM_ROWS + start_m)
cols_ptr = column_index + (off_hz * NUM_ROWS + start_m) * NNZ_V
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# scale sm_scale by log_2(e) and use
# 2^x instead of exp in the loop because CSE and LICM
# don't work as expected with `exp` in the loop
qk_scale = sm_scale * 1.44269504
# load q: it will stay in SRAM throughout
q = tl.load(q_ptrs)
q = (q * qk_scale).to(dtype)
# loop over k, v and update accumulator
m_mask = offs_m[:, None] < seqlen
for block_index in range(num_blks):
start_n = tl.load(blks_ptr + block_index)
cols = start_n + offs_n
n_mask = cols < seqlen
# -- load k, v --
k = tl.load(k_ptrs + cols[None, :] * stride_kn, mask=n_mask[None, :], other=0.0)
v = tl.load(v_ptrs + cols[:, None] * stride_vn, mask=n_mask[:, None], other=0.0)
# -- compute qk --
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
causal_mask = cols[None, :] <= offs_m[:, None]
qk = tl.where(m_mask & causal_mask, qk, float("-inf"))
qk += tl.dot(q, k)
# -- compute scaling constant --
m_i_new = tl.maximum(m_i, tl.max(qk, 1))
alpha = tl.math.exp2(m_i - m_i_new)
p = tl.math.exp2(qk - m_i_new[:, None])
# -- scale and update acc --
acc_scale = l_i * 0 + alpha # workaround some compiler bug
acc *= acc_scale[:, None]
acc += tl.dot(p.to(dtype), v)
# -- update m_i and l_i --
l_i = l_i * alpha + tl.sum(p, 1)
m_i = m_i_new
for start_n in range(0, num_cols, BLOCK_N):
n_mask = start_n + offs_n < num_cols
cols = tl.load(cols_ptr + start_n + offs_n, mask=n_mask, other=0)
# -- load k, v --
k = tl.load(k_ptrs + cols[None, :] * stride_kn, mask=n_mask[None, :], other=0.0)
v = tl.load(v_ptrs + cols[:, None] * stride_vn, mask=n_mask[:, None], other=0.0)
# -- compute qk --
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk = tl.where(m_mask & n_mask, qk, float("-inf"))
qk += tl.dot(q, k)
# -- compute scaling constant --
m_i_new = tl.maximum(m_i, tl.max(qk, 1))
alpha = tl.math.exp2(m_i - m_i_new)
p = tl.math.exp2(qk - m_i_new[:, None])
# -- scale and update acc --
acc_scale = l_i * 0 + alpha # workaround some compiler bug
acc *= acc_scale[:, None]
acc += tl.dot(p.to(dtype), v)
# -- update m_i and l_i --
l_i = l_i * alpha + tl.sum(p, 1)
m_i = m_i_new
# write back O
acc /= l_i[:, None]
# acc = tl.where(m_mask, acc / l_i[:, None], 0.0)
tl.store(o_ptrs, acc.to(dtype), mask=m_mask)
def triton_sparse_forward(
q: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
k: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
v: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
seqlens: torch.Tensor, # [BATCH, ]
block_count: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
block_offset: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
column_count: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
column_index: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
sm_scale: float,
block_size_M: int = 64,
block_size_N: int = 64,
) -> torch.Tensor:
# shape constraints
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk and Lk == Lv
assert Lk in {16, 32, 64, 128}
o = torch.zeros_like(q)
grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1)
dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16
triton_sparse_fwd_kernel[grid](
q, k, v, seqlens, sm_scale,
block_count, block_offset, column_count, column_index,
o,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
q.shape[0], q.shape[1], q.shape[2],
block_count.shape[-1], block_offset.shape[-1], column_index.shape[-1],
BLOCK_M=block_size_M, BLOCK_N=block_size_N,
BLOCK_DMODEL=Lk,
dtype=dtype,
num_warps=4, num_stages=2,
)
return o
def torch_build_index(seqlens, vertical_indexes, slash_indexes, context_size, block_size_M=64, block_size_N=64):
device = seqlens.device
batch_size, num_heads, NNZ_S = slash_indexes.shape
NNZ_V = vertical_indexes.shape[-1]
num_rows = triton.cdiv(context_size, block_size_M)
block_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32)
block_offset = torch.zeros((batch_size, num_heads, num_rows, NNZ_S), dtype=torch.int32)
column_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32)
column_index = torch.zeros((batch_size, num_heads, num_rows, NNZ_V), dtype=torch.int32)
for b in range(batch_size):
seqlen = seqlens[b]
for h in range(num_heads):
for m, start_m in enumerate(range(0, seqlen, block_size_M)):
end_m = start_m + block_size_M
s = 0
while slash_indexes[b, h, s] >= end_m:
s += 1
s_idx = max(end_m - slash_indexes[b, h, s], block_size_M)
s += 1
range_start = s_idx - block_size_M
range_end = s_idx
tmp_blocks = []
while s < NNZ_S:
s_idx = max(end_m - slash_indexes[b, h, s], block_size_M)
if s_idx > range_end + block_size_M:
tmp_blocks += list(range(range_start, range_end, block_size_N))
range_start = s_idx - block_size_M
range_end = s_idx
elif s_idx > range_end:
range_end += block_size_M
s += 1
tmp_blocks += list(range(range_start, range_end, block_size_N))
block_count[b, h, m] = len(tmp_blocks)
block_offset[b, h, m, :len(tmp_blocks)] = torch.tensor(tmp_blocks, dtype=block_offset.dtype)
tmp_columns = vertical_indexes[b, h].cpu().numpy().tolist()
tmp_columns = [col for col in tmp_columns if col < range_end]
for range_start in tmp_blocks:
range_end = range_start + block_size_N
tmp_columns = [col for col in tmp_columns if col < range_start or col >= range_end]
column_count[b, h, m] = len(tmp_columns)
column_index[b, h, m, :len(tmp_columns)] = torch.tensor(tmp_columns, dtype=block_offset.dtype)
return block_count.to(device), block_offset.to(device), column_count.to(device), column_index.to(device)
PYCUDA_BUILD_INDEX_KERNEL_CODE = '''\
__device__ int min(int x, int y) {
return x < y ? x : y;
}
__device__ int max(int x, int y) {
return x > y ? x : y;
}
__device__ void save_blocks(int* block_offset, int range_start, int range_end, int block_size, int& block_count) {
for (int idx = range_start; idx < range_end; idx += block_size) {
block_offset[block_count++] = idx;
}
}
__global__ void PYCUDA_BUILD_INDEX_KERNEL(
const int* seqlens, // [BATCH, ]
const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V]
const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S]
int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S]
int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)]
int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V]
int N_HEADS,
int N_ROWS,
int BLOCK_SIZE_M,
int BLOCK_SIZE_N,
int NNZ_V,
int NNZ_S
) {
const int batch_idx = blockIdx.y;
const int head_idx = blockIdx.x;
const int group_idx = blockIdx.z;
int seqlen = seqlens[batch_idx];
int block_idx_m = group_idx * blockDim.x + threadIdx.x;
int start_m = block_idx_m * BLOCK_SIZE_M;
if (start_m >= seqlen) {
return;
}
int end_m = start_m + BLOCK_SIZE_M;
vertical_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_V;
slash_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_S;
int row_offset = (batch_idx * N_HEADS + head_idx) * N_ROWS + block_idx_m;
block_count += row_offset;
block_offset += row_offset * NNZ_S;
column_count += row_offset;
column_index += row_offset * NNZ_V;
int tmp_col_cnt = 0, tmp_blk_cnt = 0;
int s = 0, v = 0;
int v_idx = vertical_indexes[v++];
int s_idx = slash_indexes[s++];
while (s_idx >= end_m) {
s_idx = slash_indexes[s++];
}
s_idx = max(end_m - s_idx, BLOCK_SIZE_M);
int range_start = s_idx - BLOCK_SIZE_M, range_end = s_idx;
while (1) {
if (v_idx < range_end) {
if (v_idx < range_start) {
column_index[tmp_col_cnt++] = v_idx;
}
if (v < NNZ_V) {
v_idx = vertical_indexes[v++];
} else {
v_idx = end_m + BLOCK_SIZE_M;
}
} else {
if (s < NNZ_S) {
s_idx = max(end_m - slash_indexes[s++], BLOCK_SIZE_M);
} else {
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt);
break;
}
if (s_idx > range_end + BLOCK_SIZE_M) {
save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt);
range_start = s_idx - BLOCK_SIZE_M;
range_end = s_idx;
} else if (s_idx > range_end) {
range_end += BLOCK_SIZE_M;
}
}
}
block_count[0] = tmp_blk_cnt;
column_count[0] = tmp_col_cnt;
}
'''
PYCUDA_BUILD_INDEX_KERNEL = SourceModule(
PYCUDA_BUILD_INDEX_KERNEL_CODE,
options=['-std=c++14', '-O3'],
).get_function(f'PYCUDA_BUILD_INDEX_KERNEL')
def pycuda_build_index(seqlens, vertical_indexes, slash_indexes, context_size, block_size_M=64, block_size_N=64):
batch_size, num_heads, NNZ_S = slash_indexes.shape
NNZ_V = vertical_indexes.shape[-1]
num_rows = triton.cdiv(context_size, block_size_M)
block_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32, device=seqlens.device)
block_offset = torch.zeros((batch_size, num_heads, num_rows, NNZ_S), dtype=torch.int32, device=seqlens.device)
column_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32, device=seqlens.device)
column_index = torch.zeros((batch_size, num_heads, num_rows, NNZ_V), dtype=torch.int32, device=seqlens.device)
num_threads = 64
# import ipdb; ipdb.set_trace()
PYCUDA_BUILD_INDEX_KERNEL(
seqlens, vertical_indexes, slash_indexes,
block_count, block_offset, column_count, column_index,
np.int32(num_heads), np.int32(num_rows),
np.int32(block_size_M), np.int32(block_size_N),
np.int32(NNZ_V), np.int32(NNZ_S),
# grid=(triton.cdiv(num_rows, num_threads), N_HEADS, BATCH),
grid=(num_heads, batch_size, triton.cdiv(num_rows, num_threads)),
block=(num_threads, 1, 1),
)
return block_count, block_offset, column_count, column_index
def make_causal_mask(seqlens, device, context_size):
batch_size = seqlens.shape[0]
arange = torch.arange(context_size, dtype=torch.int32, device=device)
causal_mask = arange[None, None, :, None] >= arange[None, None, None, :]
causal_mask = causal_mask.repeat((batch_size, 1, 1, 1))
for b, seqlen in enumerate(seqlens):
causal_mask[b, :, seqlen:, :] = False
causal_mask[b, :, :, seqlen:] = False
return causal_mask
def make_finegrained_mask(vertical_indexes, slash_indexes, causal_mask, device):
batch_size, num_heads, _ = vertical_indexes.shape
context_size = causal_mask.shape[-1]
arange = torch.arange(context_size, dtype=torch.int32, device=device)
sparse_mask = torch.zeros((batch_size, num_heads, context_size, context_size), dtype=torch.bool, device=device)
for b in range(batch_size):
for h in range(num_heads):
for vertical_index in vertical_indexes[b, h]:
sparse_mask[b, h, :, vertical_index] = True
for slash_index in slash_indexes[b, h]:
sparse_mask[b, h].logical_or_(arange[:, None] - arange[None, :] == slash_index)
sparse_mask.logical_and_(causal_mask)
return sparse_mask
def make_block_mask(
block_count: torch.Tensor,
block_offset: torch.Tensor,
column_count: torch.Tensor,
column_index: torch.Tensor,
seqlens: torch.Tensor,
causal_mask: torch.Tensor,
device: torch.device,
block_size_M: int = 64,
block_size_N: int = 64.
):
batch_size, num_heads, _ = block_count.shape
context_size = causal_mask.shape[-1]
block_mask = torch.zeros((batch_size, num_heads, context_size, context_size), dtype=torch.bool, device=device)
for b in range(batch_size):
for h in range(num_heads):
for m, start_m in enumerate(range(0, seqlens[b], block_size_M)):
end_m = start_m + block_size_M
for col_idx in range(column_count[b, h, m]):
block_mask[b, h, start_m:end_m, column_index[b, h, m, col_idx]] = True
for blk_idx in range(block_count[b, h, m]):
blk_start = block_offset[b, h, m, blk_idx].item()
blk_end = blk_start + block_size_N
block_mask[b, h, start_m:end_m, blk_start:blk_end] = True
block_mask.logical_and_(causal_mask)
return block_mask
def plot_mask(mask, name, batch=0, head=0):
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(16, 12))
plt.clf()
mask = mask[batch, head].cpu().numpy()
sns.heatmap(mask)
plt.savefig(name)
@triton.jit
def triton_dense_fwd_kernel(
Q, K, V, seqlens, sm_scale,
Out,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vn, stride_vk,
stride_oz, stride_oh, stride_om, stride_ok,
Z, H, N_CTX,
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
dtype: tl.constexpr,
):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
seqlen = tl.load(seqlens + off_hz // H)
if start_m * BLOCK_M >= seqlen:
return
qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh
kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh
Q_block_ptr = tl.make_block_ptr(
base=Q + qo_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
K_block_ptr = tl.make_block_ptr(
base=K + kv_offset,
shape=(BLOCK_DMODEL, N_CTX),
strides=(stride_kk, stride_kn),
offsets=(0, 0),
block_shape=(BLOCK_DMODEL, BLOCK_N),
order=(0, 1)
)
V_block_ptr = tl.make_block_ptr(
base=V + kv_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_vn, stride_vk),
offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0)
)
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# scale sm_scale by log_2(e) and use
# 2^x instead of exp in the loop because CSE and LICM
# don't work as expected with `exp` in the loop
qk_scale = sm_scale * 1.44269504
# load q: it will stay in SRAM throughout
q = tl.load(Q_block_ptr)
q = (q * qk_scale).to(dtype)
# loop over k, v and update accumulator
lo = 0
hi = (start_m + 1) * BLOCK_M
m_mask = offs_m[:, None] < seqlen
for start_n in range(lo, hi, BLOCK_N):
n_mask = (start_n + offs_n[None, :]) <= offs_m[:, None]
# -- load k, v --
k = tl.load(K_block_ptr)
v = tl.load(V_block_ptr)
# -- compute qk --
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk = tl.where(m_mask & n_mask, qk, float("-inf"))
qk += tl.dot(q, k)
# -- compute scaling constant --
m_i_new = tl.maximum(m_i, tl.max(qk, 1))
alpha = tl.math.exp2(m_i - m_i_new)
p = tl.math.exp2(qk - m_i_new[:, None])
# -- scale and update acc --
acc_scale = l_i * 0 + alpha # workaround some compiler bug
acc *= acc_scale[:, None]
acc += tl.dot(p.to(dtype), v)
# -- update m_i and l_i --
l_i = l_i * alpha + tl.sum(p, 1)
m_i = m_i_new
# update pointers
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
# write back O
acc = tl.where(m_mask, acc / l_i[:, None], 0.0)
O_block_ptr = tl.make_block_ptr(
base=Out + qo_offset,
shape=(N_CTX, BLOCK_DMODEL),
strides=(stride_om, stride_ok),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
tl.store(O_block_ptr, acc.to(dtype))
def triton_dense_forward(q, k, v, seqlens, sm_scale, block_size_M=128, block_size_N=64) -> torch.Tensor:
# shape constraints
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk and Lk == Lv
assert Lk in {16, 32, 64, 128}
o = torch.zeros_like(q)
grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1)
num_warps = 4 if Lk <= 64 else 8 # 4
dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16
triton_dense_fwd_kernel[grid](
q, k, v, seqlens, sm_scale,
o,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
q.shape[0], q.shape[1], q.shape[2],
BLOCK_M=block_size_M, BLOCK_N=block_size_N,
BLOCK_DMODEL=Lk,
dtype=dtype,
num_warps=num_warps, num_stages=4,
)
return o
def flash_attn_forward(q, k, v, seqlens, sm_scale, context_size) -> torch.Tensor:
return flash_attn_varlen_func(
q,
k,
v,
cu_seqlens_q=seqlens,
cu_seqlens_k=seqlens,
max_seqlen_q=context_size,
max_seqlen_k=context_size,
dropout_p=0.0,
softmax_scale=sm_scale,
causal=True,
)
def torch_forward(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor,
sm_scale: float,
) -> torch.Tensor:
p = torch.einsum(f'bhmk, bhnk -> bhmn', query, key) * sm_scale
p = p.where(mask, -torch.inf)
p_max = p.max(-1, keepdim=True).values
p_max = torch.where(p_max < 0, 0.0, p_max)
p_exp = torch.exp(p - p_max)
s = p_exp / (p_exp.sum(-1, keepdim=True) + 1e-6)
out = torch.einsum(f'bhmn, bhnk -> bhmk', s, value)
return out
def profile(fn, total_flops, tag, warmup=25, rep=100):
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
gflops = total_flops / ms * 1e-9
print(f'{tag}: {ms:.3f} ms | {gflops:.3f} GFLOP/s')
def test_flash_attention(
query=None,
key=None,
value=None,
seqlens=None,
vertical_indexes=None,
slash_indexes=None,
dtype=torch.float16,
device="cuda",
torch_test=True,
batch_size=4,
num_heads=32,
context_size=2048,
head_dim=128,
nnz_v=100,
nnz_s=10,
block_size_M=64,
block_size_N=64,
):
print('========================================')
if query is None and key is None and value is None:
q = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device)
k = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device)
v = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device)
else:
q = torch.tensor(query, dtype=dtype, device=device)
k = torch.tensor(key, dtype=dtype, device=device)
v = torch.tensor(value, dtype=dtype, device=device)
batch_size, num_heads, context_size, head_dim = q.shape
print(f'BATCH={batch_size}, N_CTX={context_size}, N_HEADS={num_heads}, D_HEAD={head_dim}')
if seqlens is None:
seqlens = torch.randint(context_size // 2, context_size, (batch_size, ), dtype=torch.int32, device=device)
else:
seqlens = torch.tensor(seqlens, dtype=torch.int32, device=device)
print(seqlens)
dense_mask_nnz = seqlens.to(torch.float32).square().sum().item() * num_heads / 2
sm_scale = head_dim ** -0.5
if torch_test:
causal_mask = make_causal_mask(seqlens, device, context_size)
ref_o_dense = torch_forward(q, k, v, causal_mask, sm_scale)
if vertical_indexes is None or slash_indexes is None:
vertical_indexes = torch.stack([
torch.stack([
torch.randperm(seqlen, dtype=torch.int32, device=device)[:nnz_v].sort(descending=False)[0]
for _ in range(num_heads)
])
for seqlen in seqlens
])
slash_indexes = torch.concatenate([
torch.stack([
torch.stack([
torch.randperm(seqlen - 1, dtype=torch.int32, device=device)[:nnz_s - 1].sort(descending=True)[0] + 1
for _ in range(num_heads)
])
for seqlen in seqlens
]),
torch.zeros((batch_size, num_heads, 1), dtype=torch.int32, device=device)
], dim=-1)
pycuda_build_index_fn = lambda: pycuda_build_index(
seqlens, vertical_indexes, slash_indexes, context_size, block_size_M, block_size_N
)
indexes = pycuda_build_index_fn()
block_count, block_offset, column_count, column_index = indexes
if torch_test:
block_count_ref, block_offset_ref, column_count_ref, column_index_ref = torch_build_index(
seqlens, vertical_indexes, slash_indexes, context_size, block_size_M, block_size_N
)
torch.testing.assert_close(block_count_ref, block_count)
torch.testing.assert_close(block_offset_ref, block_offset)
torch.testing.assert_close(column_count_ref, column_count)
torch.testing.assert_close(column_index_ref, column_index)
sparse_mask_nnz = column_count.to(torch.float64).sum().item() * block_size_M + \
block_count.to(torch.float64).sum().item() * block_size_M * block_size_N
print(f'block mask sparsity: {1 - sparse_mask_nnz / dense_mask_nnz}')
pycuda_build_index_fn = lambda: pycuda_build_index(
seqlens, vertical_indexes, slash_indexes, context_size, block_size_M, block_size_N
)
profile(pycuda_build_index_fn, 0., 'pycuda-index')
if torch_test:
finegrained_mask = make_finegrained_mask(vertical_indexes, slash_indexes, causal_mask, device)
block_mask = make_block_mask(*indexes, seqlens, causal_mask, device, block_size_M, block_size_N)
plot_mask(finegrained_mask, 'mask.png', 0, 0)
plot_mask(block_mask, 'mask-1.png', 0, 0)
ref_o_sparse = torch_forward(q, k, v, block_mask, sm_scale)
triton_dense_fn = lambda: triton_dense_forward(q, k, v, seqlens, sm_scale)
output_triton_dense = triton_dense_fn()
if torch_test:
# Note: not correct for context_size % block_size_M != 0
torch.testing.assert_close(output_triton_dense, ref_o_dense, atol=1e-2, rtol=0)
profile(triton_dense_fn, 2. * head_dim * dense_mask_nnz, 'triton-dense')
triton_sparse_fn = lambda: triton_sparse_forward(q, k, v, seqlens, *indexes, sm_scale, block_size_M, block_size_N)
output_triton_sparse = triton_sparse_fn()
if torch_test:
torch.testing.assert_close(output_triton_sparse, ref_o_sparse, atol=1e-2, rtol=0)
profile(triton_sparse_fn, 2. * head_dim * sparse_mask_nnz, 'triton-sparse')
q = q.swapaxes(1, 2).contiguous()
k = k.swapaxes(1, 2).contiguous()
v = v.swapaxes(1, 2).contiguous()
q = torch.concatenate([q[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)])
k = torch.concatenate([k[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)])
v = torch.concatenate([v[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)])
seqlens = torch.nn.functional.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0))
flash_fn = lambda: flash_attn_forward(q, k, v, seqlens, sm_scale, context_size)
output_flash = flash_fn()
output_flash = torch.stack([
torch.nn.functional.pad(
output_flash[seqlens[i]:seqlens[i + 1], :, :],
(0, 0, 0, 0, 0, context_size + seqlens[i] - seqlens[i + 1])
)
for i in range(batch_size)
]).swapaxes(1, 2).contiguous()
if torch_test:
torch.testing.assert_close(output_flash, ref_o_dense, atol=1e-2, rtol=0)
profile(flash_fn, 2. * head_dim * dense_mask_nnz, 'flash-dense')
print('========================================\n')
if torch_test and sparse_mask_nnz >= dense_mask_nnz:
torch.testing.assert_close(output_flash, output_triton_sparse, atol=1e-2, rtol=0)
def vertical_slash_sparse_attention(
query: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
key: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
value: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD]
v_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_V]
s_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_S]
block_size_M: int = 64,
block_size_N: int = 64,
):
batch_size, num_heads, context_size, head_dim = query.shape
pad = block_size_M - (context_size & (block_size_M - 1))
query = torch.nn.functional.pad(query, [0, 0, 0, pad, 0, 0, 0, 0])
key = torch.nn.functional.pad(key, [0, 0, 0, pad, 0, 0, 0, 0])
value = torch.nn.functional.pad(value, [0, 0, 0, pad, 0, 0, 0, 0])
if head_dim not in [16, 32, 64, 128, 256, 512]:
target_dim = 2 ** math.ceil(math.log2(head_dim)) - head_dim
query = torch.nn.functional.pad(query, [0, target_dim, 0, 0, 0, 0, 0, 0])
key = torch.nn.functional.pad(key, [0, target_dim, 0, 0, 0, 0, 0, 0])
value = torch.nn.functional.pad(value, [0, target_dim, 0, 0, 0, 0, 0, 0])
v_idx = v_idx.to(torch.int32).reshape((batch_size, num_heads, -1)).sort(dim=-1, descending=False)[0]
s_idx = s_idx.to(torch.int32).reshape((batch_size, num_heads, -1)).sort(dim=-1, descending=True)[0]
seqlens = torch.tensor([context_size], dtype=torch.int32, device=query.device)
sm_scale = head_dim ** -0.5
block_count, block_offset, column_count, column_index = pycuda_build_index(
seqlens, v_idx, s_idx, context_size, block_size_M, block_size_N,
)
# if context_size > 700000:
# import ipdb; ipdb.set_trace()
# dense_mask_nnz = seqlens.to(torch.float32).square().sum().item() * num_heads / 2
# sparse_mask_nnz = column_count.to(torch.float64).sum().item() * block_size_M + \
# block_count.to(torch.float64).sum().item() * block_size_M * block_size_N
# print(f'block mask sparsity: {1 - sparse_mask_nnz / dense_mask_nnz}')
out = triton_sparse_forward(
query, key, value, seqlens,
block_count, block_offset, column_count, column_index,
sm_scale, block_size_M, block_size_N,
)
return out[..., :context_size, :head_dim]