groqnotes / app.py
miaohaiyuan's picture
extent file size to 50Mb
439683b verified
raw
history blame
20.8 kB
import streamlit as st
from groq import Groq
import json
import os
from io import BytesIO
from md2pdf.core import md2pdf
from dotenv import load_dotenv
from download import download_video_audio, delete_download
load_dotenv()
GROQ_API_KEY = os.environ.get("GROQ_API_KEY", None)
MAX_FILE_SIZE = 50 * 1024 * 1024 # 25 MB
FILE_TOO_LARGE_MESSAGE = "The audio file is too large. If you used a YouTube link, please try a shorter video clip. If you uploaded an audio file, try trimming or compressing the audio to under 25 MB."
audio_file_path = None
if 'api_key' not in st.session_state:
st.session_state.api_key = GROQ_API_KEY
if 'groq' not in st.session_state:
if GROQ_API_KEY:
st.session_state.groq = Groq()
st.set_page_config(
page_title="Groqnotes",
page_icon="🗒️",
)
class GenerationStatistics:
def __init__(self, input_time=0,output_time=0,input_tokens=0,output_tokens=0,total_time=0,model_name="llama3-8b-8192"):
self.input_time = input_time
self.output_time = output_time
self.input_tokens = input_tokens
self.output_tokens = output_tokens
self.total_time = total_time # Sum of queue, prompt (input), and completion (output) times
self.model_name = model_name
def get_input_speed(self):
"""
Tokens per second calculation for input
"""
if self.input_time != 0:
return self.input_tokens / self.input_time
else:
return 0
def get_output_speed(self):
"""
Tokens per second calculation for output
"""
if self.output_time != 0:
return self.output_tokens / self.output_time
else:
return 0
def add(self, other):
"""
Add statistics from another GenerationStatistics object to this one.
"""
if not isinstance(other, GenerationStatistics):
raise TypeError("Can only add GenerationStatistics objects")
self.input_time += other.input_time
self.output_time += other.output_time
self.input_tokens += other.input_tokens
self.output_tokens += other.output_tokens
self.total_time += other.total_time
def __str__(self):
return (f"\n## {self.get_output_speed():.2f} T/s ⚡\nRound trip time: {self.total_time:.2f}s Model: {self.model_name}\n\n"
f"| Metric | Input | Output | Total |\n"
f"|-----------------|----------------|-----------------|----------------|\n"
f"| Speed (T/s) | {self.get_input_speed():.2f} | {self.get_output_speed():.2f} | {(self.input_tokens + self.output_tokens) / self.total_time if self.total_time != 0 else 0:.2f} |\n"
f"| Tokens | {self.input_tokens} | {self.output_tokens} | {self.input_tokens + self.output_tokens} |\n"
f"| Inference Time (s) | {self.input_time:.2f} | {self.output_time:.2f} | {self.total_time:.2f} |")
class NoteSection:
def __init__(self, structure, transcript):
self.structure = structure
self.contents = {title: "" for title in self.flatten_structure(structure)}
self.placeholders = {title: st.empty() for title in self.flatten_structure(structure)}
st.markdown("## Raw transcript:")
st.markdown(transcript)
st.markdown("---")
def flatten_structure(self, structure):
sections = []
for title, content in structure.items():
sections.append(title)
if isinstance(content, dict):
sections.extend(self.flatten_structure(content))
return sections
def update_content(self, title, new_content):
try:
self.contents[title] += new_content
self.display_content(title)
except TypeError as e:
pass
def display_content(self, title):
if self.contents[title].strip():
self.placeholders[title].markdown(f"## {title}\n{self.contents[title]}")
def return_existing_contents(self, level=1) -> str:
existing_content = ""
for title, content in self.structure.items():
if self.contents[title].strip(): # Only include title if there is content
existing_content += f"{'#' * level} {title}\n{self.contents[title]}.\n\n"
if isinstance(content, dict):
existing_content += self.get_markdown_content(content, level + 1)
return existing_content
def display_structure(self, structure=None, level=1):
if structure is None:
structure = self.structure
for title, content in structure.items():
if self.contents[title].strip(): # Only display title if there is content
st.markdown(f"{'#' * level} {title}")
self.placeholders[title].markdown(self.contents[title])
if isinstance(content, dict):
self.display_structure(content, level + 1)
def display_toc(self, structure, columns, level=1, col_index=0):
for title, content in structure.items():
with columns[col_index % len(columns)]:
st.markdown(f"{' ' * (level-1) * 2}- {title}")
col_index += 1
if isinstance(content, dict):
col_index = self.display_toc(content, columns, level + 1, col_index)
return col_index
def get_markdown_content(self, structure=None, level=1):
"""
Returns the markdown styled pure string with the contents.
"""
if structure is None:
structure = self.structure
markdown_content = ""
for title, content in structure.items():
if self.contents[title].strip(): # Only include title if there is content
markdown_content += f"{'#' * level} {title}\n{self.contents[title]}.\n\n"
if isinstance(content, dict):
markdown_content += self.get_markdown_content(content, level + 1)
return markdown_content
def create_markdown_file(content: str) -> BytesIO:
"""
Create a Markdown file from the provided content.
"""
markdown_file = BytesIO()
markdown_file.write(content.encode('utf-8'))
markdown_file.seek(0)
return markdown_file
def create_pdf_file(content: str):
"""
Create a PDF file from the provided content.
"""
pdf_buffer = BytesIO()
md2pdf(pdf_buffer, md_content=content)
pdf_buffer.seek(0)
return pdf_buffer
def transcribe_audio(audio_file):
"""
Transcribes audio using Groq's Whisper API.
"""
transcription = st.session_state.groq.audio.transcriptions.create(
file=audio_file,
model="whisper-large-v3",
prompt="",
response_format="json",
language="en",
temperature=0.0
)
results = transcription.text
return results
def generate_notes_structure(transcript: str, model: str = "llama3-70b-8192"):
"""
Returns notes structure content as well as total tokens and total time for generation.
"""
shot_example = """
"Introduction": "Introduction to the AMA session, including the topic of Groq scaling architecture and the panelists",
"Panelist Introductions": "Brief introductions from Igor, Andrew, and Omar, covering their backgrounds and roles at Groq",
"Groq Scaling Architecture Overview": "High-level overview of Groq's scaling architecture, covering hardware, software, and cloud components",
"Hardware Perspective": "Igor's overview of Groq's hardware approach, using an analogy of city traffic management to explain the traditional compute approach and Groq's innovative approach",
"Traditional Compute": "Description of traditional compute approach, including asynchronous nature, queues, and poor utilization of infrastructure",
"Groq's Approach": "Description of Groq's approach, including pre-orchestrated movement of data, low latency, high energy efficiency, and high utilization of resources",
"Hardware Implementation": "Igor's explanation of the hardware implementation, including a comparison of GPU and LPU architectures"
}"""
completion = st.session_state.groq.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": "Write in JSON format:\n\n{\"Title of section goes here\":\"Description of section goes here\",\"Title of section goes here\":\"Description of section goes here\",\"Title of section goes here\":\"Description of section goes here\"}"
},
{
"role": "user",
"content": f"### Transcript {transcript}\n\n### Example\n\n{shot_example}### Instructions\n\nCreate a structure for comprehensive notes on the above transcribed audio. Section titles and content descriptions must be comprehensive. Quality over quantity."
}
],
temperature=0.3,
max_tokens=8000,
top_p=1,
stream=False,
response_format={"type": "json_object"},
stop=None,
)
usage = completion.usage
statistics_to_return = GenerationStatistics(input_time=usage.prompt_time, output_time=usage.completion_time, input_tokens=usage.prompt_tokens, output_tokens=usage.completion_tokens, total_time=usage.total_time, model_name=model)
return statistics_to_return, completion.choices[0].message.content
def generate_section(transcript: str, existing_notes: str, section: str, model: str = "llama3-8b-8192"):
stream = st.session_state.groq.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": "You are an expert writer. Generate a comprehensive note for the section provided based factually on the transcript provided. Do *not* repeat any content from previous sections."
},
{
"role": "user",
"content": f"### Transcript\n\n{transcript}\n\n### Existing Notes\n\n{existing_notes}\n\n### Instructions\n\nGenerate comprehensive notes for this section only based on the transcript: \n\n{section}"
}
],
temperature=0.3,
max_tokens=8000,
top_p=1,
stream=True,
stop=None,
)
for chunk in stream:
tokens = chunk.choices[0].delta.content
if tokens:
yield tokens
if x_groq := chunk.x_groq:
if not x_groq.usage:
continue
usage = x_groq.usage
statistics_to_return = GenerationStatistics(input_time=usage.prompt_time, output_time=usage.completion_time, input_tokens=usage.prompt_tokens, output_tokens=usage.completion_tokens, total_time=usage.total_time, model_name=model)
yield statistics_to_return
# Initialize
if 'button_disabled' not in st.session_state:
st.session_state.button_disabled = False
if 'button_text' not in st.session_state:
st.session_state.button_text = "Generate Notes"
if 'statistics_text' not in st.session_state:
st.session_state.statistics_text = ""
st.write("""
# Groqnotes: Create structured notes from audio 🗒️⚡
""")
def disable():
st.session_state.button_disabled = True
def enable():
st.session_state.button_disabled = False
def empty_st():
st.empty()
try:
with st.sidebar:
audio_files = {
"Transformers Explained by Google Cloud Tech": {
"file_path": "assets/audio/transformers_explained.m4a",
"youtube_link": "https://www.youtube.com/watch?v=SZorAJ4I-sA"
},
"The Essence of Calculus by 3Blue1Brown": {
"file_path": "assets/audio/essence_calculus.m4a",
"youtube_link": "https://www.youtube.com/watch?v=WUvTyaaNkzM"
},
"First 20 minutes of Groq's AMA": {
"file_path": "assets/audio/groq_ama_trimmed_20min.m4a",
"youtube_link": "https://www.youtube.com/watch?v=UztfweS-7MU"
}
}
st.write(f"# 🗒️ GroqNotes \n## Generate notes from audio in seconds using Groq, Whisper, and Llama3")
st.markdown(f"[Github Repository](https://github.com/bklieger/groqnotes)\n\nAs with all generative AI, content may include inaccurate or placeholder information. GroqNotes is in beta and all feedback is welcome!")
st.write(f"---")
st.write("# Customization Settings\n🧪 These settings are experimental.\n")
st.write(f"By default, GroqNotes uses Llama3-70b for generating the notes outline and Llama3-8b for the content. This balances quality with speed and rate limit usage. You can customize these selections below.")
outline_model_options = ["llama3-70b-8192", "llama3-8b-8192", "mixtral-8x7b-32768", "gemma-7b-it"]
outline_selected_model = st.selectbox("Outline generation:", outline_model_options)
content_model_options = ["llama3-8b-8192", "llama3-70b-8192", "mixtral-8x7b-32768", "gemma-7b-it"]
content_selected_model = st.selectbox("Content generation:", content_model_options)
# Add note about rate limits
st.info("Important: Different models have different token and rate limits which may cause runtime errors.")
if st.button('End Generation and Download Notes'):
if "notes" in st.session_state:
# Create markdown file
markdown_file = create_markdown_file(st.session_state.notes.get_markdown_content())
st.download_button(
label='Download Text',
data=markdown_file,
file_name='generated_notes.txt',
mime='text/plain'
)
# Create pdf file (styled)
pdf_file = create_pdf_file(st.session_state.notes.get_markdown_content())
st.download_button(
label='Download PDF',
data=pdf_file,
file_name='generated_notes.pdf',
mime='application/pdf'
)
st.session_state.button_disabled = False
else:
raise ValueError("Please generate content first before downloading the notes.")
input_method = st.radio("Choose input method:", ["Upload audio file", "YouTube link"])
audio_file = None
youtube_link = None
groq_input_key = None
with st.form("groqform"):
if not GROQ_API_KEY:
groq_input_key = st.text_input("Enter your Groq API Key (gsk_yA...):", "", type="password")
# Add radio button to choose between file upload and YouTube link
if input_method == "Upload audio file":
audio_file = st.file_uploader("Upload an audio file", type=["mp3", "wav", "m4a", "mp4"]) # TODO: Add a max size
else:
youtube_link = st.text_input("Enter YouTube link:", "")
# Generate button
submitted = st.form_submit_button(st.session_state.button_text, on_click=disable, disabled=st.session_state.button_disabled)
#processing status
status_text = st.empty()
def display_status(text):
status_text.write(text)
def clear_status():
status_text.empty()
download_status_text = st.empty()
def display_download_status(text:str):
download_status_text.write(text)
def clear_download_status():
download_status_text.empty()
# Statistics
placeholder = st.empty()
def display_statistics():
with placeholder.container():
if st.session_state.statistics_text:
if "Transcribing audio in background" not in st.session_state.statistics_text:
st.markdown(st.session_state.statistics_text + "\n\n---\n") # Format with line if showing statistics
else:
st.markdown(st.session_state.statistics_text)
else:
placeholder.empty()
if submitted:
if input_method == "Upload audio file" and audio_file is None:
st.error("Please upload an audio file")
elif input_method == "YouTube link" and not youtube_link:
st.error("Please enter a YouTube link")
else:
st.session_state.button_disabled = True
# Show temporary message before transcription is generated and statistics show
audio_file_path = None
if input_method == "YouTube link":
display_status("Downloading audio from YouTube link ....")
audio_file_path = download_video_audio(youtube_link, display_download_status)
if audio_file_path is None:
st.error("Failed to download audio from YouTube link. Please try again.")
enable()
clear_status()
else:
# Read the downloaded file and create a file-like objec
display_status("Processing Youtube audio ....")
with open(audio_file_path, 'rb') as f:
file_contents = f.read()
audio_file = BytesIO(file_contents)
# Check size first to ensure will work with Whisper
if os.path.getsize(audio_file_path) > MAX_FILE_SIZE:
raise ValueError(FILE_TOO_LARGE_MESSAGE)
audio_file.name = os.path.basename(audio_file_path) # Set the file name
delete_download(audio_file_path)
clear_download_status()
if not GROQ_API_KEY:
st.session_state.groq = Groq(api_key=groq_input_key)
display_status("Transcribing audio in background....")
transcription_text = transcribe_audio(audio_file)
display_statistics()
display_status("Generating notes structure....")
large_model_generation_statistics, notes_structure = generate_notes_structure(transcription_text, model=str(outline_selected_model))
print("Structure: ",notes_structure)
display_status("Generating notes ...")
total_generation_statistics = GenerationStatistics(model_name="llama3-8b-8192")
clear_status()
try:
notes_structure_json = json.loads(notes_structure)
notes = NoteSection(structure=notes_structure_json,transcript=transcription_text)
if 'notes' not in st.session_state:
st.session_state.notes = notes
st.session_state.notes.display_structure()
def stream_section_content(sections):
for title, content in sections.items():
if isinstance(content, str):
content_stream = generate_section(transcript=transcription_text, existing_notes=notes.return_existing_contents(), section=(title + ": " + content),model=str(content_selected_model))
for chunk in content_stream:
# Check if GenerationStatistics data is returned instead of str tokens
chunk_data = chunk
if type(chunk_data) == GenerationStatistics:
total_generation_statistics.add(chunk_data)
st.session_state.statistics_text = str(total_generation_statistics)
display_statistics()
elif chunk is not None:
st.session_state.notes.update_content(title, chunk)
elif isinstance(content, dict):
stream_section_content(content)
stream_section_content(notes_structure_json)
except json.JSONDecodeError:
st.error("Failed to decode the notes structure. Please try again.")
enable()
except Exception as e:
st.session_state.button_disabled = False
if hasattr(e, 'status_code') and e.status_code == 413:
# In the future, this limitation will be fixed as Groqnotes will automatically split the audio file and transcribe each part.
st.error(FILE_TOO_LARGE_MESSAGE)
else:
st.error(e)
if st.button("Clear"):
st.rerun()
# Remove audio after exception to prevent data storage leak
if audio_file_path is not None:
delete_download(audio_file_path)