Spaces:
Running
Running
from google.adk.agents import LlmAgent | |
from tools import csv_parser, plot_generator, forecaster | |
trend_detector_agent = LlmAgent( | |
name="trend_detector_agent", | |
model="gemini-2.5-pro-exp-03-25", | |
description="Detects trends and anomalies in business data.", | |
instruction=""" | |
Analyze the input table. Identify major trends, seasonal patterns, | |
and anomalies (spikes or drops). Return a concise summary. | |
""", | |
tools=[csv_parser.parse_csv_tool, plot_generator.plot_sales_tool] | |
) | |
forecast_agent = LlmAgent( | |
name="forecast_agent", | |
model="gemini-2.5-pro-exp-03-25", | |
description="Forecasts future metrics from time series data.", | |
instruction=""" | |
Forecast next 3 months of sales based on historical patterns. | |
Use the forecast tool to generate a visual chart. | |
""", | |
tools=[forecaster.forecast_tool] | |
) | |
strategy_agent = LlmAgent( | |
name="strategy_agent", | |
model="gemini-2.5-pro-exp-03-25", | |
description="Recommends strategic business decisions.", | |
instruction=""" | |
Based on trends and forecasts, suggest optimization strategies | |
across marketing, operations, and finance (ROI, CAC, churn). | |
""" | |
) | |
analytics_coordinator = LlmAgent( | |
name="analytics_coordinator", | |
model="gemini-2.5-pro-exp-03-25", | |
description="Coordinates full BI pipeline: trends, forecast, strategy.", | |
instruction=""" | |
Run the following: | |
1. Analyze the CSV with trend_detector_agent | |
2. Forecast future metrics using forecast_agent | |
3. Recommend business strategies using strategy_agent | |
Return a full dashboard-style summary. | |
""", | |
sub_agents=[trend_detector_agent, forecast_agent, strategy_agent] | |
) | |