from google.adk.agents import LlmAgent from tools import csv_parser, plot_generator, forecaster trend_detector_agent = LlmAgent( name="trend_detector_agent", model="gemini-2.5-pro-exp-03-25", description="Detects trends and anomalies in business data.", instruction=""" Analyze the input table. Identify major trends, seasonal patterns, and anomalies (spikes or drops). Return a concise summary. """, tools=[csv_parser.parse_csv_tool, plot_generator.plot_sales_tool] ) forecast_agent = LlmAgent( name="forecast_agent", model="gemini-2.5-pro-exp-03-25", description="Forecasts future metrics from time series data.", instruction=""" Forecast next 3 months of sales based on historical patterns. Use the forecast tool to generate a visual chart. """, tools=[forecaster.forecast_tool] ) strategy_agent = LlmAgent( name="strategy_agent", model="gemini-2.5-pro-exp-03-25", description="Recommends strategic business decisions.", instruction=""" Based on trends and forecasts, suggest optimization strategies across marketing, operations, and finance (ROI, CAC, churn). """ ) analytics_coordinator = LlmAgent( name="analytics_coordinator", model="gemini-2.5-pro-exp-03-25", description="Coordinates full BI pipeline: trends, forecast, strategy.", instruction=""" Run the following: 1. Analyze the CSV with trend_detector_agent 2. Forecast future metrics using forecast_agent 3. Recommend business strategies using strategy_agent Return a full dashboard-style summary. """, sub_agents=[trend_detector_agent, forecast_agent, strategy_agent] )