Spaces:
Runtime error
Runtime error
import torch | |
from datasets import load_dataset | |
import transformers | |
from diffusers import StableDiffusionPipeline | |
import gradio as gr | |
from random import randrange | |
import os | |
MY_SECRET_TOKEN = os.environ.get('stable-diffusion') | |
data = load_dataset("mfumanelli/movies-small") | |
data = data['train'].to_pandas() | |
model_id = 'CompVis/stable-diffusion-v1-4' | |
device = torch.device('cpu' if not torch.cuda.is_available() else 'cuda') | |
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=MY_SECRET_TOKEN, revision='fp16') | |
pipe = pipe.to(device) | |
def infer(prompt, samples, steps, scale): | |
generator = torch.Generator(device=device) | |
if device.type == 'cuda': | |
with torch.autocast(device.type): | |
images_list = pipe( | |
[prompt] * samples, | |
num_inference_steps=steps, | |
guidance_scale=scale, | |
generator=generator, | |
) | |
else: | |
images_list = pipe( | |
[prompt] * samples, | |
num_inference_steps=steps, | |
guidance_scale=scale, | |
generator=generator, | |
) | |
return images_list | |
def generate_movie(): | |
seed = randrange(data.shape[0]) | |
plot = data.iloc[seed]["plot_synopsis_sum"] | |
image = infer(plot, 1, 50, 7.5) | |
return image["sample"][0], seed | |
def movie_title(seed): | |
return data.iloc[int(seed)]["title"] | |
css = """ | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
.gr-button { | |
color: white; | |
border-color: black; | |
background: black; | |
} | |
input[type='range'] { | |
accent-color: black; | |
} | |
.dark input[type='range'] { | |
accent-color: #dfdfdf; | |
} | |
.container { | |
max-width: 730px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
#iamge { | |
min-height: 22rem; | |
margin-bottom: 15px; | |
margin-left: auto; | |
margin-right: auto; | |
border-bottom-right-radius: .5rem !important; | |
border-bottom-left-radius: .5rem !important; | |
} | |
#iamge>div>.h-full { | |
min-height: 20rem; | |
} | |
.details:hover { | |
text-decoration: underline; | |
} | |
.gr-button { | |
white-space: nowrap; | |
} | |
.gr-button:focus { | |
border-color: rgb(147 197 253 / var(--tw-border-opacity)); | |
outline: none; | |
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); | |
--tw-border-opacity: 1; | |
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); | |
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); | |
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); | |
--tw-ring-opacity: .5; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 35px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
.acknowledgments h4{ | |
margin: 1.25em 0 .25em 0; | |
font-weight: bold; | |
font-size: 115%; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<svg style="color: red" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 256", height="0.85em" width="0.85em"> | |
<rect width="18em" height="18em" fill="none"></rect> | |
<path d="M128,216S28,160,28,92A52,52,0,0,1,128,72h0A52,52,0,0,1,228,92C228,160,128,216,128,216Z" fill="#d63e25" stroke="#d63e25" stroke-linecap="round" | |
stroke-linejoin="round" stroke-width="12"></path></svg> | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
Stable Diffusion Loves Cinema | |
</h1> | |
</div> | |
<p style="margin-bottom: 20px; font-size: 94%"> | |
Stable Diffusion is a state-of-the-art text-to-image model that generates images from text, | |
in this demo it is used to generate movie scenes from their storyline. <br></p> | |
<hr style="height:2px;border-width:0;color:gray;background-color:gray"> | |
<br> | |
<p align="left" style="margin-bottom: 10px; font-size: 94%"> | |
<b>Instructions</b>: press the "Generate a movie scene!" button to generate an image and try to see if you can guess the movie. | |
You can see if you guessed right by pressing the "Tell me the title" button. | |
</p> | |
</div> | |
""" | |
) | |
with gr.Group(): | |
with gr.Box(): | |
with gr.Row().style(mobile_collapse=False, equal_height=True): | |
b1 = gr.Button("Generate a movie scene!").style( | |
margin=False, | |
rounded=(False, True, True, False), | |
) | |
b2 = gr.Button("Tell me the title").style( | |
margin=False, | |
rounded=(False, True, True, False), | |
) | |
text = gr.Textbox(label="Title:") | |
image = gr.Image( | |
label="Generated images", show_label=False, elem_id="image" | |
).style(height="auto") | |
seed = gr.Number(visible=False) | |
b1.click(generate_movie, inputs=None, outputs=[image, seed]) | |
b2.click(movie_title, inputs=seed, outputs=text) | |
demo.launch() | |