Spaces:
Sleeping
Sleeping
# METEHAN AYHAN | |
import streamlit as st | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
model = tf.keras.models.load_model('model.h5') | |
classes = { 0:'Speed limit (20km/h)', | |
1:'Speed limit (30km/h)', | |
2:'Speed limit (50km/h)', | |
3:'Speed limit (60km/h)', | |
4:'Speed limit (70km/h)', | |
5:'Speed limit (80km/h)', | |
6:'End of speed limit (80km/h)', | |
7:'Speed limit (100km/h)', | |
8:'Speed limit (120km/h)', | |
9:'No passing', | |
10:'No passing veh over 3.5 tons', | |
11:'Right-of-way at intersection', | |
12:'Priority road', | |
13:'Yield', | |
14:'Stop', | |
15:'No vehicles', | |
16:'Veh > 3.5 tons prohibited', | |
17:'No entry', | |
18:'General caution', | |
19:'Dangerous curve left', | |
20:'Dangerous curve right', | |
21:'Double curve', | |
22:'Bumpy road', | |
23:'Slippery road', | |
24:'Road narrows on the right', | |
25:'Road work', | |
26:'Traffic signals', | |
27:'Pedestrians', | |
28:'Children crossing', | |
29:'Bicycles crossing', | |
30:'Beware of ice/snow', | |
31:'Wild animals crossing', | |
32:'End speed + passing limits', | |
33:'Turn right ahead', | |
34:'Turn left ahead', | |
35:'Ahead only', | |
36:'Go straight or right', | |
37:'Go straight or left', | |
38:'Keep right', | |
39:'Keep left', | |
40:'Roundabout mandatory', | |
41:'End of no passing', | |
42:'End no passing veh > 3.5 tons' } | |
st.title('German Traffic Sign Recognition - Metehan Ayhan') | |
st.write("Upload an image of a traffic sign to predict its class.") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Traffic Sign.', use_column_width=True) | |
st.write("") | |
st.write("Classifying...") | |
image = image.resize((32, 32)) | |
image = np.array(image) | |
image = np.expand_dims(image, axis=0) # Modelin beklediği şekil | |
predictions = model.predict(image) | |
predicted_class = np.argmax(predictions[0]) | |
st.write(f"Prediction: {classes[predicted_class]}") | |