paligemma-doc / app.py
merve's picture
merve HF staff
Create app.py
b802c2a verified
raw
history blame
5.29 kB
import gradio as gr
import requests
from PIL import Image
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import spaces
@spaces.GPU
def infer_diagram(image, question):
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ai2d-448").to("cuda")
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-ai2d-448")
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
predictions = model.generate(**inputs, max_new_tokens=100)
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
@spaces.GPU
def infer_ocrvqa(image, question):
model = Pix2StructForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ocrvqa-896").to("cuda")
processor = Pix2StructProcessor.from_pretrained("google/paligemma-3b-ft-ocrvqa-896e")
inputs = processor(images=image,text=question, return_tensors="pt").to("cuda")
predictions = model.generate(**inputs, max_new_tokens=100)
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
@spaces.GPU
def infer_infographics(image, question):
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-infovqa-896").to("cuda")
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-infovqa-896")
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
predictions = model.generate(**inputs, max_new_tokens=100)
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
@spaces.GPU
def infer_doc(image, question):
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-docvqa-896").to("cuda")
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-docvqa-896")
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda")
predictions = model.generate(**inputs, max_new_tokens=100)
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n")
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>PaliGemma Fine-tuned on Documents πŸ“„<center><h1>")
gr.HTML("<h3><center>This Space is built for you to compare different PaliGemma models fine-tuned on document tasks. ⚑</h3>")
gr.HTML("<h3><center>Each tab in this app demonstrates PaliGemma models fine-tuned on document question answering, infographics question answering, diagram understanding, and reading comprehension from images. πŸ“„πŸ“•πŸ“Š<h3>")
gr.HTML("<h3><center>Models are downloaded on the go, so first inference in each tab might take time if it's not already downloaded.<h3>")
with gr.Tab(label="Visual Question Answering over Documents"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Document")
question = gr.Text(label="Question")
submit_btn = gr.Button(value="Submit")
output = gr.Text(label="Answer")
gr.Examples(
[["assets/docvqa_example.png", "How many items are sold?"]],
inputs = [input_img, question],
outputs = [output],
fn=infer_doc,
label='Click on any Examples below to get Document Question Answering results quickly πŸ‘‡'
)
submit_btn.click(infer_doc, [input_img, question], [output])
with gr.Tab(label="Visual Question Answering over Infographics"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Image")
question = gr.Text(label="Question")
submit_btn = gr.Button(value="Submit")
output = gr.Text(label="Answer")
gr.Examples(
[["assets/infographics_example (1).jpeg", "What is this infographic about?"]],
inputs = [input_img, question],
outputs = [output],
fn=infer_infovqa,
label='Click on any Examples below to get Infographics QA results quickly πŸ‘‡'
)
submit_btn.click(infer_infographics, [input_img, question], [output])
with gr.Tab(label="Reading from Images"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Document")
question = gr.Text(label="Question")
submit_btn = gr.Button(value="Submit")
output = gr.Text(label="Infer")
submit_btn.click(infer_ocrvqa, [input_img, question], [output])
gr.Examples(
[["assets/ocrvqa.jpg", "Who is the author of this book?"]],
inputs = [input_img, question],
outputs = [output],
fn=infer_doc,
label='Click on any Examples below to get UI question answering results quickly πŸ‘‡'
)
with gr.Tab(label="Diagram Understanding"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Diagram")
question = gr.Text(label="Question")
submit_btn = gr.Button(value="Submit")
output = gr.Text(label="Infer")
submit_btn.click(infer_diagram, [input_img, question], [output])
gr.Examples(
[["assets/diagram.png", "What is the diagram showing?"]],
inputs = [input_img, question],
outputs = [output],
fn=infer_doc,
label='Click on any Examples below to get UI question answering results quickly πŸ‘‡'
)
demo.launch(debug=True)