Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import requests | |
from PIL import Image | |
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor | |
import spaces | |
def infer_diagram(image, question): | |
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ai2d-448").to("cuda") | |
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-ai2d-448") | |
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda") | |
predictions = model.generate(**inputs, max_new_tokens=100) | |
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
def infer_ocrvqa(image, question): | |
model = Pix2StructForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ocrvqa-896").to("cuda") | |
processor = Pix2StructProcessor.from_pretrained("google/paligemma-3b-ft-ocrvqa-896e") | |
inputs = processor(images=image,text=question, return_tensors="pt").to("cuda") | |
predictions = model.generate(**inputs, max_new_tokens=100) | |
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
def infer_infographics(image, question): | |
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-infovqa-896").to("cuda") | |
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-infovqa-896") | |
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda") | |
predictions = model.generate(**inputs, max_new_tokens=100) | |
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
def infer_doc(image, question): | |
model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-docvqa-896").to("cuda") | |
processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-docvqa-896") | |
inputs = processor(images=image, text=question, return_tensors="pt").to("cuda") | |
predictions = model.generate(**inputs, max_new_tokens=100) | |
return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML("<h1><center>PaliGemma Fine-tuned on Documents π<center><h1>") | |
gr.HTML("<h3><center>This Space is built for you to compare different PaliGemma models fine-tuned on document tasks. β‘</h3>") | |
gr.HTML("<h3><center>Each tab in this app demonstrates PaliGemma models fine-tuned on document question answering, infographics question answering, diagram understanding, and reading comprehension from images. πππ<h3>") | |
gr.HTML("<h3><center>Models are downloaded on the go, so first inference in each tab might take time if it's not already downloaded.<h3>") | |
with gr.Tab(label="Visual Question Answering over Documents"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Document") | |
question = gr.Text(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
output = gr.Text(label="Answer") | |
gr.Examples( | |
[["assets/docvqa_example.png", "How many items are sold?"]], | |
inputs = [input_img, question], | |
outputs = [output], | |
fn=infer_doc, | |
label='Click on any Examples below to get Document Question Answering results quickly π' | |
) | |
submit_btn.click(infer_doc, [input_img, question], [output]) | |
with gr.Tab(label="Visual Question Answering over Infographics"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Image") | |
question = gr.Text(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
output = gr.Text(label="Answer") | |
gr.Examples( | |
[["assets/infographics_example (1).jpeg", "What is this infographic about?"]], | |
inputs = [input_img, question], | |
outputs = [output], | |
fn=infer_infovqa, | |
label='Click on any Examples below to get Infographics QA results quickly π' | |
) | |
submit_btn.click(infer_infographics, [input_img, question], [output]) | |
with gr.Tab(label="Reading from Images"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Document") | |
question = gr.Text(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
output = gr.Text(label="Infer") | |
submit_btn.click(infer_ocrvqa, [input_img, question], [output]) | |
gr.Examples( | |
[["assets/ocrvqa.jpg", "Who is the author of this book?"]], | |
inputs = [input_img, question], | |
outputs = [output], | |
fn=infer_doc, | |
label='Click on any Examples below to get UI question answering results quickly π' | |
) | |
with gr.Tab(label="Diagram Understanding"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Diagram") | |
question = gr.Text(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
output = gr.Text(label="Infer") | |
submit_btn.click(infer_diagram, [input_img, question], [output]) | |
gr.Examples( | |
[["assets/diagram.png", "What is the diagram showing?"]], | |
inputs = [input_img, question], | |
outputs = [output], | |
fn=infer_doc, | |
label='Click on any Examples below to get UI question answering results quickly π' | |
) | |
demo.launch(debug=True) |