Spaces:
Running
on
T4
Running
on
T4
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import math | |
from opt_einsum import contract as einsum | |
from util_module import init_lecun_normal | |
from icecream import ic | |
class FeedForwardLayer(nn.Module): | |
def __init__(self, d_model, r_ff, p_drop=0.1): | |
super(FeedForwardLayer, self).__init__() | |
self.norm = nn.LayerNorm(d_model) | |
self.linear1 = nn.Linear(d_model, d_model*r_ff) | |
self.dropout = nn.Dropout(p_drop) | |
self.linear2 = nn.Linear(d_model*r_ff, d_model) | |
self.reset_parameter() | |
def reset_parameter(self): | |
# initialize linear layer right before ReLu: He initializer (kaiming normal) | |
nn.init.kaiming_normal_(self.linear1.weight, nonlinearity='relu') | |
nn.init.zeros_(self.linear1.bias) | |
# initialize linear layer right before residual connection: zero initialize | |
nn.init.zeros_(self.linear2.weight) | |
nn.init.zeros_(self.linear2.bias) | |
def forward(self, src): | |
src = self.norm(src) | |
src = self.linear2(self.dropout(F.relu_(self.linear1(src)))) | |
return src | |
class Attention(nn.Module): | |
# calculate multi-head attention | |
def __init__(self, d_query, d_key, n_head, d_hidden, d_out, p_drop=0.1): | |
super(Attention, self).__init__() | |
self.h = n_head | |
self.dim = d_hidden | |
# | |
self.to_q = nn.Linear(d_query, n_head*d_hidden, bias=False) | |
self.to_k = nn.Linear(d_key, n_head*d_hidden, bias=False) | |
self.to_v = nn.Linear(d_key, n_head*d_hidden, bias=False) | |
# | |
self.to_out = nn.Linear(n_head*d_hidden, d_out) | |
self.scaling = 1/math.sqrt(d_hidden) | |
# | |
# initialize all parameters properly | |
self.reset_parameter() | |
def reset_parameter(self): | |
# query/key/value projection: Glorot uniform / Xavier uniform | |
nn.init.xavier_uniform_(self.to_q.weight) | |
nn.init.xavier_uniform_(self.to_k.weight) | |
nn.init.xavier_uniform_(self.to_v.weight) | |
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining | |
nn.init.zeros_(self.to_out.weight) | |
nn.init.zeros_(self.to_out.bias) | |
def forward(self, query, key, value): | |
B, Q = query.shape[:2] | |
B, K = key.shape[:2] | |
# | |
query = self.to_q(query).reshape(B, Q, self.h, self.dim) | |
key = self.to_k(key).reshape(B, K, self.h, self.dim) | |
value = self.to_v(value).reshape(B, K, self.h, self.dim) | |
# | |
query = query * self.scaling | |
attn = einsum('bqhd,bkhd->bhqk', query, key) | |
attn = F.softmax(attn, dim=-1) | |
# | |
out = einsum('bhqk,bkhd->bqhd', attn, value) | |
out = out.reshape(B, Q, self.h*self.dim) | |
# | |
out = self.to_out(out) | |
return out | |
class AttentionWithBias(nn.Module): | |
def __init__(self, d_in=256, d_bias=128, n_head=8, d_hidden=32): | |
super(AttentionWithBias, self).__init__() | |
self.norm_in = nn.LayerNorm(d_in) | |
self.norm_bias = nn.LayerNorm(d_bias) | |
# | |
self.to_q = nn.Linear(d_in, n_head*d_hidden, bias=False) | |
self.to_k = nn.Linear(d_in, n_head*d_hidden, bias=False) | |
self.to_v = nn.Linear(d_in, n_head*d_hidden, bias=False) | |
self.to_b = nn.Linear(d_bias, n_head, bias=False) | |
self.to_g = nn.Linear(d_in, n_head*d_hidden) | |
self.to_out = nn.Linear(n_head*d_hidden, d_in) | |
self.scaling = 1/math.sqrt(d_hidden) | |
self.h = n_head | |
self.dim = d_hidden | |
self.reset_parameter() | |
def reset_parameter(self): | |
# query/key/value projection: Glorot uniform / Xavier uniform | |
nn.init.xavier_uniform_(self.to_q.weight) | |
nn.init.xavier_uniform_(self.to_k.weight) | |
nn.init.xavier_uniform_(self.to_v.weight) | |
# bias: normal distribution | |
self.to_b = init_lecun_normal(self.to_b) | |
# gating: zero weights, one biases (mostly open gate at the begining) | |
nn.init.zeros_(self.to_g.weight) | |
nn.init.ones_(self.to_g.bias) | |
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining | |
nn.init.zeros_(self.to_out.weight) | |
nn.init.zeros_(self.to_out.bias) | |
def forward(self, x, bias): | |
B, L = x.shape[:2] | |
# | |
x = self.norm_in(x) | |
bias = self.norm_bias(bias) | |
# | |
query = self.to_q(x).reshape(B, L, self.h, self.dim) | |
key = self.to_k(x).reshape(B, L, self.h, self.dim) | |
value = self.to_v(x).reshape(B, L, self.h, self.dim) | |
bias = self.to_b(bias) # (B, L, L, h) | |
gate = torch.sigmoid(self.to_g(x)) | |
# | |
key = key * self.scaling | |
attn = einsum('bqhd,bkhd->bqkh', query, key) | |
attn = attn + bias | |
attn = F.softmax(attn, dim=-2) | |
# | |
out = einsum('bqkh,bkhd->bqhd', attn, value).reshape(B, L, -1) | |
out = gate * out | |
# | |
out = self.to_out(out) | |
return out | |
# MSA Attention (row/column) from AlphaFold architecture | |
class SequenceWeight(nn.Module): | |
def __init__(self, d_msa, n_head, d_hidden, p_drop=0.1): | |
super(SequenceWeight, self).__init__() | |
self.h = n_head | |
self.dim = d_hidden | |
self.scale = 1.0 / math.sqrt(self.dim) | |
self.to_query = nn.Linear(d_msa, n_head*d_hidden) | |
self.to_key = nn.Linear(d_msa, n_head*d_hidden) | |
self.dropout = nn.Dropout(p_drop) | |
self.reset_parameter() | |
def reset_parameter(self): | |
# query/key/value projection: Glorot uniform / Xavier uniform | |
nn.init.xavier_uniform_(self.to_query.weight) | |
nn.init.xavier_uniform_(self.to_key.weight) | |
def forward(self, msa): | |
B, N, L = msa.shape[:3] | |
tar_seq = msa[:,0] | |
q = self.to_query(tar_seq).view(B, 1, L, self.h, self.dim) | |
k = self.to_key(msa).view(B, N, L, self.h, self.dim) | |
q = q * self.scale | |
attn = einsum('bqihd,bkihd->bkihq', q, k) | |
attn = F.softmax(attn, dim=1) | |
return self.dropout(attn) | |
class MSARowAttentionWithBias(nn.Module): | |
def __init__(self, d_msa=256, d_pair=128, n_head=8, d_hidden=32): | |
super(MSARowAttentionWithBias, self).__init__() | |
self.norm_msa = nn.LayerNorm(d_msa) | |
self.norm_pair = nn.LayerNorm(d_pair) | |
# | |
self.seq_weight = SequenceWeight(d_msa, n_head, d_hidden, p_drop=0.1) | |
self.to_q = nn.Linear(d_msa, n_head*d_hidden, bias=False) | |
self.to_k = nn.Linear(d_msa, n_head*d_hidden, bias=False) | |
self.to_v = nn.Linear(d_msa, n_head*d_hidden, bias=False) | |
self.to_b = nn.Linear(d_pair, n_head, bias=False) | |
self.to_g = nn.Linear(d_msa, n_head*d_hidden) | |
self.to_out = nn.Linear(n_head*d_hidden, d_msa) | |
self.scaling = 1/math.sqrt(d_hidden) | |
self.h = n_head | |
self.dim = d_hidden | |
self.reset_parameter() | |
def reset_parameter(self): | |
# query/key/value projection: Glorot uniform / Xavier uniform | |
nn.init.xavier_uniform_(self.to_q.weight) | |
nn.init.xavier_uniform_(self.to_k.weight) | |
nn.init.xavier_uniform_(self.to_v.weight) | |
# bias: normal distribution | |
self.to_b = init_lecun_normal(self.to_b) | |
# gating: zero weights, one biases (mostly open gate at the begining) | |
nn.init.zeros_(self.to_g.weight) | |
nn.init.ones_(self.to_g.bias) | |
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining | |
nn.init.zeros_(self.to_out.weight) | |
nn.init.zeros_(self.to_out.bias) | |
def forward(self, msa, pair): # TODO: make this as tied-attention | |
B, N, L = msa.shape[:3] | |
# | |
msa = self.norm_msa(msa) | |
pair = self.norm_pair(pair) | |
# | |
seq_weight = self.seq_weight(msa) # (B, N, L, h, 1) | |
query = self.to_q(msa).reshape(B, N, L, self.h, self.dim) | |
key = self.to_k(msa).reshape(B, N, L, self.h, self.dim) | |
value = self.to_v(msa).reshape(B, N, L, self.h, self.dim) | |
bias = self.to_b(pair) # (B, L, L, h) | |
gate = torch.sigmoid(self.to_g(msa)) | |
# | |
query = query * seq_weight.expand(-1, -1, -1, -1, self.dim) | |
key = key * self.scaling | |
attn = einsum('bsqhd,bskhd->bqkh', query, key) | |
attn = attn + bias | |
attn = F.softmax(attn, dim=-2) | |
# | |
out = einsum('bqkh,bskhd->bsqhd', attn, value).reshape(B, N, L, -1) | |
out = gate * out | |
# | |
out = self.to_out(out) | |
return out | |
class MSAColAttention(nn.Module): | |
def __init__(self, d_msa=256, n_head=8, d_hidden=32): | |
super(MSAColAttention, self).__init__() | |
self.norm_msa = nn.LayerNorm(d_msa) | |
# | |
self.to_q = nn.Linear(d_msa, n_head*d_hidden, bias=False) | |
self.to_k = nn.Linear(d_msa, n_head*d_hidden, bias=False) | |
self.to_v = nn.Linear(d_msa, n_head*d_hidden, bias=False) | |
self.to_g = nn.Linear(d_msa, n_head*d_hidden) | |
self.to_out = nn.Linear(n_head*d_hidden, d_msa) | |
self.scaling = 1/math.sqrt(d_hidden) | |
self.h = n_head | |
self.dim = d_hidden | |
self.reset_parameter() | |
def reset_parameter(self): | |
# query/key/value projection: Glorot uniform / Xavier uniform | |
nn.init.xavier_uniform_(self.to_q.weight) | |
nn.init.xavier_uniform_(self.to_k.weight) | |
nn.init.xavier_uniform_(self.to_v.weight) | |
# gating: zero weights, one biases (mostly open gate at the begining) | |
nn.init.zeros_(self.to_g.weight) | |
nn.init.ones_(self.to_g.bias) | |
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining | |
nn.init.zeros_(self.to_out.weight) | |
nn.init.zeros_(self.to_out.bias) | |
def forward(self, msa): | |
B, N, L = msa.shape[:3] | |
# | |
msa = self.norm_msa(msa) | |
# | |
query = self.to_q(msa).reshape(B, N, L, self.h, self.dim) | |
key = self.to_k(msa).reshape(B, N, L, self.h, self.dim) | |
value = self.to_v(msa).reshape(B, N, L, self.h, self.dim) | |
gate = torch.sigmoid(self.to_g(msa)) | |
# | |
query = query * self.scaling | |
attn = einsum('bqihd,bkihd->bihqk', query, key) | |
attn = F.softmax(attn, dim=-1) | |
# | |
out = einsum('bihqk,bkihd->bqihd', attn, value).reshape(B, N, L, -1) | |
out = gate * out | |
# | |
out = self.to_out(out) | |
return out | |
class MSAColGlobalAttention(nn.Module): | |
def __init__(self, d_msa=64, n_head=8, d_hidden=8): | |
super(MSAColGlobalAttention, self).__init__() | |
self.norm_msa = nn.LayerNorm(d_msa) | |
# | |
self.to_q = nn.Linear(d_msa, n_head*d_hidden, bias=False) | |
self.to_k = nn.Linear(d_msa, d_hidden, bias=False) | |
self.to_v = nn.Linear(d_msa, d_hidden, bias=False) | |
self.to_g = nn.Linear(d_msa, n_head*d_hidden) | |
self.to_out = nn.Linear(n_head*d_hidden, d_msa) | |
self.scaling = 1/math.sqrt(d_hidden) | |
self.h = n_head | |
self.dim = d_hidden | |
self.reset_parameter() | |
def reset_parameter(self): | |
# query/key/value projection: Glorot uniform / Xavier uniform | |
nn.init.xavier_uniform_(self.to_q.weight) | |
nn.init.xavier_uniform_(self.to_k.weight) | |
nn.init.xavier_uniform_(self.to_v.weight) | |
# gating: zero weights, one biases (mostly open gate at the begining) | |
nn.init.zeros_(self.to_g.weight) | |
nn.init.ones_(self.to_g.bias) | |
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining | |
nn.init.zeros_(self.to_out.weight) | |
nn.init.zeros_(self.to_out.bias) | |
def forward(self, msa): | |
B, N, L = msa.shape[:3] | |
# | |
msa = self.norm_msa(msa) | |
# | |
query = self.to_q(msa).reshape(B, N, L, self.h, self.dim) | |
query = query.mean(dim=1) # (B, L, h, dim) | |
key = self.to_k(msa) # (B, N, L, dim) | |
value = self.to_v(msa) # (B, N, L, dim) | |
gate = torch.sigmoid(self.to_g(msa)) # (B, N, L, h*dim) | |
# | |
query = query * self.scaling | |
attn = einsum('bihd,bkid->bihk', query, key) # (B, L, h, N) | |
attn = F.softmax(attn, dim=-1) | |
# | |
out = einsum('bihk,bkid->bihd', attn, value).reshape(B, 1, L, -1) # (B, 1, L, h*dim) | |
out = gate * out # (B, N, L, h*dim) | |
# | |
out = self.to_out(out) | |
return out | |
# Instead of triangle attention, use Tied axail attention with bias from coordinates..? | |
class BiasedAxialAttention(nn.Module): | |
def __init__(self, d_pair, d_bias, n_head, d_hidden, p_drop=0.1, is_row=True): | |
super(BiasedAxialAttention, self).__init__() | |
# | |
self.is_row = is_row | |
self.norm_pair = nn.LayerNorm(d_pair) | |
self.norm_bias = nn.LayerNorm(d_bias) | |
self.to_q = nn.Linear(d_pair, n_head*d_hidden, bias=False) | |
self.to_k = nn.Linear(d_pair, n_head*d_hidden, bias=False) | |
self.to_v = nn.Linear(d_pair, n_head*d_hidden, bias=False) | |
self.to_b = nn.Linear(d_bias, n_head, bias=False) | |
self.to_g = nn.Linear(d_pair, n_head*d_hidden) | |
self.to_out = nn.Linear(n_head*d_hidden, d_pair) | |
self.scaling = 1/math.sqrt(d_hidden) | |
self.h = n_head | |
self.dim = d_hidden | |
# initialize all parameters properly | |
self.reset_parameter() | |
def reset_parameter(self): | |
# query/key/value projection: Glorot uniform / Xavier uniform | |
nn.init.xavier_uniform_(self.to_q.weight) | |
nn.init.xavier_uniform_(self.to_k.weight) | |
nn.init.xavier_uniform_(self.to_v.weight) | |
# bias: normal distribution | |
self.to_b = init_lecun_normal(self.to_b) | |
# gating: zero weights, one biases (mostly open gate at the begining) | |
nn.init.zeros_(self.to_g.weight) | |
nn.init.ones_(self.to_g.bias) | |
# to_out: right before residual connection: zero initialize -- to make it sure residual operation is same to the Identity at the begining | |
nn.init.zeros_(self.to_out.weight) | |
nn.init.zeros_(self.to_out.bias) | |
def forward(self, pair, bias, same_chain = None): | |
# pair: (B, L, L, d_pair) | |
B, L = pair.shape[:2] | |
if self.is_row: | |
pair = pair.permute(0,2,1,3) | |
bias = bias.permute(0,2,1,3) | |
pair = self.norm_pair(pair) | |
bias = self.norm_bias(bias) | |
query = self.to_q(pair).reshape(B, L, L, self.h, self.dim) | |
key = self.to_k(pair).reshape(B, L, L, self.h, self.dim) | |
value = self.to_v(pair).reshape(B, L, L, self.h, self.dim) | |
bias = self.to_b(bias) # (B, L, L, h) | |
gate = torch.sigmoid(self.to_g(pair)) # (B, L, L, h*dim) | |
query = query * self.scaling | |
key = key / math.sqrt(L) # normalize for tied attention | |
attn = einsum('bnihk,bnjhk->bijh', query, key) # tied attention | |
attn = attn + bias # apply bias | |
attn = F.softmax(attn, dim=-2) # (B, L, L, h) | |
if same_chain is not None: | |
ic(same_chain) | |
ic(attn) | |
ic(attn[~same_chain]) | |
attn[~same_chain] *= 1.1 | |
out = einsum('bijh,bkjhd->bikhd', attn, value).reshape(B, L, L, -1) | |
out = gate * out | |
out = self.to_out(out) | |
if self.is_row: | |
out = out.permute(0,2,1,3) | |
return out | |