disco / utils /util.py
menghanxia's picture
upload whole project
b3640b9
raw
history blame
6.92 kB
from __future__ import division
from __future__ import print_function
import os, glob, shutil, math, json
from queue import Queue
from threading import Thread
from skimage.segmentation import mark_boundaries
import numpy as np
from PIL import Image
import cv2, torch
def get_gauss_kernel(size, sigma):
'''Function to mimic the 'fspecial' gaussian MATLAB function'''
x, y = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]
g = np.exp(-((x**2 + y**2)/(2.0*sigma**2)))
return g/g.sum()
def batchGray2Colormap(gray_batch):
colormap = plt.get_cmap('viridis')
heatmap_batch = []
for i in range(gray_batch.shape[0]):
# quantize [-1,1] to {0,1}
gray_map = gray_batch[i, :, :, 0]
heatmap = (colormap(gray_map) * 2**16).astype(np.uint16)[:,:,:3]
heatmap_batch.append(heatmap/127.5-1.0)
return np.array(heatmap_batch)
class PlotterThread():
'''log tensorboard data in a background thread to save time'''
def __init__(self, writer):
self.writer = writer
self.task_queue = Queue(maxsize=0)
worker = Thread(target=self.do_work, args=(self.task_queue,))
worker.setDaemon(True)
worker.start()
def do_work(self, q):
while True:
content = q.get()
if content[-1] == 'image':
self.writer.add_image(*content[:-1])
elif content[-1] == 'scalar':
self.writer.add_scalar(*content[:-1])
else:
raise ValueError
q.task_done()
def add_data(self, name, value, step, data_type='scalar'):
self.task_queue.put([name, value, step, data_type])
def __len__(self):
return self.task_queue.qsize()
def save_images_from_batch(img_batch, save_dir, filename_list, batch_no=-1, suffix=None):
N,H,W,C = img_batch.shape
if C == 3:
#! rgb color image
for i in range(N):
# [-1,1] >>> [0,255]
image = Image.fromarray((127.5*(img_batch[i,:,:,:]+1.)).astype(np.uint8))
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
elif C == 1:
#! single-channel gray image
for i in range(N):
# [-1,1] >>> [0,255]
image = Image.fromarray((127.5*(img_batch[i,:,:,0]+1.)).astype(np.uint8))
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*img_batch.shape[0]+i)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
else:
#! multi-channel: save each channel as a single image
for i in range(N):
# [-1,1] >>> [0,255]
for j in range(C):
image = Image.fromarray((127.5*(img_batch[i,:,:,j]+1.)).astype(np.uint8))
if batch_no == -1:
_, file_name = os.path.split(filename_list[i])
name_only, _ = os.path.os.path.splitext(file_name)
save_name = name_only + '_c%d.png' % j
else:
save_name = '%05d_c%d.png' % (batch_no*N+i, j)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
return None
def save_normLabs_from_batch(img_batch, save_dir, filename_list, batch_no=-1, suffix=None):
N,H,W,C = img_batch.shape
if C != 3:
print('@Warning:the Lab images are NOT in 3 channels!')
return None
# denormalization: L: (L+1.0)*50.0 | a: a*110.0| b: b*110.0
img_batch[:,:,:,0] = img_batch[:,:,:,0] * 50.0 + 50.0
img_batch[:,:,:,1:3] = img_batch[:,:,:,1:3] * 110.0
#! convert into RGB color image
for i in range(N):
rgb_img = cv2.cvtColor(img_batch[i,:,:,:], cv2.COLOR_LAB2RGB)
image = Image.fromarray((rgb_img*255.0).astype(np.uint8))
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
return None
def save_markedSP_from_batch(img_batch, spix_batch, save_dir, filename_list, batch_no=-1, suffix=None):
N,H,W,C = img_batch.shape
#! img_batch: BGR nd-array (range:0~1)
#! map_batch: single-channel spixel map
#print('----------', img_batch.shape, spix_batch.shape)
for i in range(N):
norm_image = img_batch[i,:,:,:]*0.5+0.5
spixel_bd_image = mark_boundaries(norm_image, spix_batch[i,:,:,0].astype(int), color=(1,1,1))
#spixel_bd_image = cv2.cvtColor(spixel_bd_image, cv2.COLOR_BGR2RGB)
image = Image.fromarray((spixel_bd_image*255.0).astype(np.uint8))
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i)
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name
image.save(os.path.join(save_dir, save_name), 'PNG')
return None
def get_filelist(data_dir):
file_list = glob.glob(os.path.join(data_dir, '*.*'))
file_list.sort()
return file_list
def collect_filenames(data_dir):
file_list = get_filelist(data_dir)
name_list = []
for file_path in file_list:
_, file_name = os.path.split(file_path)
name_list.append(file_name)
name_list.sort()
return name_list
def exists_or_mkdir(path, need_remove=False):
if not os.path.exists(path):
os.makedirs(path)
elif need_remove:
shutil.rmtree(path)
os.makedirs(path)
return None
def save_list(save_path, data_list, append_mode=False):
n = len(data_list)
if append_mode:
with open(save_path, 'a') as f:
f.writelines([str(data_list[i]) + '\n' for i in range(n-1,n)])
else:
with open(save_path, 'w') as f:
f.writelines([str(data_list[i]) + '\n' for i in range(n)])
return None
def save_dict(save_path, dict):
json.dumps(dict, open(save_path,"w"))
return None
if __name__ == '__main__':
data_dir = '../PolyNet/PolyNet/cache/'
#visualizeLossCurves(data_dir)
clbar = GamutIndex()
ab, ab_gamut_mask = clbar._get_gamut_mask()
ab2q = clbar._get_ab_to_q(ab_gamut_mask)
q2ab = clbar._get_q_to_ab(ab, ab_gamut_mask)
maps = ab_gamut_mask*255.0
image = Image.fromarray(maps.astype(np.uint8))
image.save('gamut.png', 'PNG')
print(ab2q.shape)
print(q2ab.shape)
print('label range:', np.min(ab2q), np.max(ab2q))