Spaces:
Runtime error
Runtime error
from __future__ import division | |
from __future__ import print_function | |
import os, glob, shutil, math, json | |
from queue import Queue | |
from threading import Thread | |
from skimage.segmentation import mark_boundaries | |
import numpy as np | |
from PIL import Image | |
import cv2, torch | |
def get_gauss_kernel(size, sigma): | |
'''Function to mimic the 'fspecial' gaussian MATLAB function''' | |
x, y = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1] | |
g = np.exp(-((x**2 + y**2)/(2.0*sigma**2))) | |
return g/g.sum() | |
def batchGray2Colormap(gray_batch): | |
colormap = plt.get_cmap('viridis') | |
heatmap_batch = [] | |
for i in range(gray_batch.shape[0]): | |
# quantize [-1,1] to {0,1} | |
gray_map = gray_batch[i, :, :, 0] | |
heatmap = (colormap(gray_map) * 2**16).astype(np.uint16)[:,:,:3] | |
heatmap_batch.append(heatmap/127.5-1.0) | |
return np.array(heatmap_batch) | |
class PlotterThread(): | |
'''log tensorboard data in a background thread to save time''' | |
def __init__(self, writer): | |
self.writer = writer | |
self.task_queue = Queue(maxsize=0) | |
worker = Thread(target=self.do_work, args=(self.task_queue,)) | |
worker.setDaemon(True) | |
worker.start() | |
def do_work(self, q): | |
while True: | |
content = q.get() | |
if content[-1] == 'image': | |
self.writer.add_image(*content[:-1]) | |
elif content[-1] == 'scalar': | |
self.writer.add_scalar(*content[:-1]) | |
else: | |
raise ValueError | |
q.task_done() | |
def add_data(self, name, value, step, data_type='scalar'): | |
self.task_queue.put([name, value, step, data_type]) | |
def __len__(self): | |
return self.task_queue.qsize() | |
def save_images_from_batch(img_batch, save_dir, filename_list, batch_no=-1, suffix=None): | |
N,H,W,C = img_batch.shape | |
if C == 3: | |
#! rgb color image | |
for i in range(N): | |
# [-1,1] >>> [0,255] | |
image = Image.fromarray((127.5*(img_batch[i,:,:,:]+1.)).astype(np.uint8)) | |
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i) | |
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
image.save(os.path.join(save_dir, save_name), 'PNG') | |
elif C == 1: | |
#! single-channel gray image | |
for i in range(N): | |
# [-1,1] >>> [0,255] | |
image = Image.fromarray((127.5*(img_batch[i,:,:,0]+1.)).astype(np.uint8)) | |
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*img_batch.shape[0]+i) | |
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
image.save(os.path.join(save_dir, save_name), 'PNG') | |
else: | |
#! multi-channel: save each channel as a single image | |
for i in range(N): | |
# [-1,1] >>> [0,255] | |
for j in range(C): | |
image = Image.fromarray((127.5*(img_batch[i,:,:,j]+1.)).astype(np.uint8)) | |
if batch_no == -1: | |
_, file_name = os.path.split(filename_list[i]) | |
name_only, _ = os.path.os.path.splitext(file_name) | |
save_name = name_only + '_c%d.png' % j | |
else: | |
save_name = '%05d_c%d.png' % (batch_no*N+i, j) | |
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
image.save(os.path.join(save_dir, save_name), 'PNG') | |
return None | |
def save_normLabs_from_batch(img_batch, save_dir, filename_list, batch_no=-1, suffix=None): | |
N,H,W,C = img_batch.shape | |
if C != 3: | |
print('@Warning:the Lab images are NOT in 3 channels!') | |
return None | |
# denormalization: L: (L+1.0)*50.0 | a: a*110.0| b: b*110.0 | |
img_batch[:,:,:,0] = img_batch[:,:,:,0] * 50.0 + 50.0 | |
img_batch[:,:,:,1:3] = img_batch[:,:,:,1:3] * 110.0 | |
#! convert into RGB color image | |
for i in range(N): | |
rgb_img = cv2.cvtColor(img_batch[i,:,:,:], cv2.COLOR_LAB2RGB) | |
image = Image.fromarray((rgb_img*255.0).astype(np.uint8)) | |
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i) | |
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
image.save(os.path.join(save_dir, save_name), 'PNG') | |
return None | |
def save_markedSP_from_batch(img_batch, spix_batch, save_dir, filename_list, batch_no=-1, suffix=None): | |
N,H,W,C = img_batch.shape | |
#! img_batch: BGR nd-array (range:0~1) | |
#! map_batch: single-channel spixel map | |
#print('----------', img_batch.shape, spix_batch.shape) | |
for i in range(N): | |
norm_image = img_batch[i,:,:,:]*0.5+0.5 | |
spixel_bd_image = mark_boundaries(norm_image, spix_batch[i,:,:,0].astype(int), color=(1,1,1)) | |
#spixel_bd_image = cv2.cvtColor(spixel_bd_image, cv2.COLOR_BGR2RGB) | |
image = Image.fromarray((spixel_bd_image*255.0).astype(np.uint8)) | |
save_name = filename_list[i] if batch_no==-1 else '%05d.png' % (batch_no*N+i) | |
save_name = save_name.replace('.png', '-%s.png'%suffix) if suffix else save_name | |
image.save(os.path.join(save_dir, save_name), 'PNG') | |
return None | |
def get_filelist(data_dir): | |
file_list = glob.glob(os.path.join(data_dir, '*.*')) | |
file_list.sort() | |
return file_list | |
def collect_filenames(data_dir): | |
file_list = get_filelist(data_dir) | |
name_list = [] | |
for file_path in file_list: | |
_, file_name = os.path.split(file_path) | |
name_list.append(file_name) | |
name_list.sort() | |
return name_list | |
def exists_or_mkdir(path, need_remove=False): | |
if not os.path.exists(path): | |
os.makedirs(path) | |
elif need_remove: | |
shutil.rmtree(path) | |
os.makedirs(path) | |
return None | |
def save_list(save_path, data_list, append_mode=False): | |
n = len(data_list) | |
if append_mode: | |
with open(save_path, 'a') as f: | |
f.writelines([str(data_list[i]) + '\n' for i in range(n-1,n)]) | |
else: | |
with open(save_path, 'w') as f: | |
f.writelines([str(data_list[i]) + '\n' for i in range(n)]) | |
return None | |
def save_dict(save_path, dict): | |
json.dumps(dict, open(save_path,"w")) | |
return None | |
if __name__ == '__main__': | |
data_dir = '../PolyNet/PolyNet/cache/' | |
#visualizeLossCurves(data_dir) | |
clbar = GamutIndex() | |
ab, ab_gamut_mask = clbar._get_gamut_mask() | |
ab2q = clbar._get_ab_to_q(ab_gamut_mask) | |
q2ab = clbar._get_q_to_ab(ab, ab_gamut_mask) | |
maps = ab_gamut_mask*255.0 | |
image = Image.fromarray(maps.astype(np.uint8)) | |
image.save('gamut.png', 'PNG') | |
print(ab2q.shape) | |
print(q2ab.shape) | |
print('label range:', np.min(ab2q), np.max(ab2q)) |