Spaces:
Running
Running
| # Adapted from https://github.com/Rudrabha/Wav2Lip/blob/master/audio.py | |
| import librosa | |
| import librosa.filters | |
| import numpy as np | |
| from scipy import signal | |
| from scipy.io import wavfile | |
| from omegaconf import OmegaConf | |
| import torch | |
| audio_config_path = "configs/audio.yaml" | |
| config = OmegaConf.load(audio_config_path) | |
| def load_wav(path, sr): | |
| return librosa.core.load(path, sr=sr)[0] | |
| def save_wav(wav, path, sr): | |
| wav *= 32767 / max(0.01, np.max(np.abs(wav))) | |
| # proposed by @dsmiller | |
| wavfile.write(path, sr, wav.astype(np.int16)) | |
| def save_wavenet_wav(wav, path, sr): | |
| librosa.output.write_wav(path, wav, sr=sr) | |
| def preemphasis(wav, k, preemphasize=True): | |
| if preemphasize: | |
| return signal.lfilter([1, -k], [1], wav) | |
| return wav | |
| def inv_preemphasis(wav, k, inv_preemphasize=True): | |
| if inv_preemphasize: | |
| return signal.lfilter([1], [1, -k], wav) | |
| return wav | |
| def get_hop_size(): | |
| hop_size = config.audio.hop_size | |
| if hop_size is None: | |
| assert config.audio.frame_shift_ms is not None | |
| hop_size = int(config.audio.frame_shift_ms / 1000 * config.audio.sample_rate) | |
| return hop_size | |
| def linearspectrogram(wav): | |
| D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize)) | |
| S = _amp_to_db(np.abs(D)) - config.audio.ref_level_db | |
| if config.audio.signal_normalization: | |
| return _normalize(S) | |
| return S | |
| def melspectrogram(wav): | |
| D = _stft(preemphasis(wav, config.audio.preemphasis, config.audio.preemphasize)) | |
| S = _amp_to_db(_linear_to_mel(np.abs(D))) - config.audio.ref_level_db | |
| if config.audio.signal_normalization: | |
| return _normalize(S) | |
| return S | |
| def _lws_processor(): | |
| import lws | |
| return lws.lws(config.audio.n_fft, get_hop_size(), fftsize=config.audio.win_size, mode="speech") | |
| def _stft(y): | |
| if config.audio.use_lws: | |
| return _lws_processor(config.audio).stft(y).T | |
| else: | |
| return librosa.stft(y=y, n_fft=config.audio.n_fft, hop_length=get_hop_size(), win_length=config.audio.win_size) | |
| ########################################################## | |
| # Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) | |
| def num_frames(length, fsize, fshift): | |
| """Compute number of time frames of spectrogram""" | |
| pad = fsize - fshift | |
| if length % fshift == 0: | |
| M = (length + pad * 2 - fsize) // fshift + 1 | |
| else: | |
| M = (length + pad * 2 - fsize) // fshift + 2 | |
| return M | |
| def pad_lr(x, fsize, fshift): | |
| """Compute left and right padding""" | |
| M = num_frames(len(x), fsize, fshift) | |
| pad = fsize - fshift | |
| T = len(x) + 2 * pad | |
| r = (M - 1) * fshift + fsize - T | |
| return pad, pad + r | |
| ########################################################## | |
| # Librosa correct padding | |
| def librosa_pad_lr(x, fsize, fshift): | |
| return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] | |
| # Conversions | |
| _mel_basis = None | |
| def _linear_to_mel(spectogram): | |
| global _mel_basis | |
| if _mel_basis is None: | |
| _mel_basis = _build_mel_basis() | |
| return np.dot(_mel_basis, spectogram) | |
| def _build_mel_basis(): | |
| assert config.audio.fmax <= config.audio.sample_rate // 2 | |
| return librosa.filters.mel( | |
| sr=config.audio.sample_rate, | |
| n_fft=config.audio.n_fft, | |
| n_mels=config.audio.num_mels, | |
| fmin=config.audio.fmin, | |
| fmax=config.audio.fmax, | |
| ) | |
| def _amp_to_db(x): | |
| min_level = np.exp(config.audio.min_level_db / 20 * np.log(10)) | |
| return 20 * np.log10(np.maximum(min_level, x)) | |
| def _db_to_amp(x): | |
| return np.power(10.0, (x) * 0.05) | |
| def _normalize(S): | |
| if config.audio.allow_clipping_in_normalization: | |
| if config.audio.symmetric_mels: | |
| return np.clip( | |
| (2 * config.audio.max_abs_value) * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)) | |
| - config.audio.max_abs_value, | |
| -config.audio.max_abs_value, | |
| config.audio.max_abs_value, | |
| ) | |
| else: | |
| return np.clip( | |
| config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)), | |
| 0, | |
| config.audio.max_abs_value, | |
| ) | |
| assert S.max() <= 0 and S.min() - config.audio.min_level_db >= 0 | |
| if config.audio.symmetric_mels: | |
| return (2 * config.audio.max_abs_value) * ( | |
| (S - config.audio.min_level_db) / (-config.audio.min_level_db) | |
| ) - config.audio.max_abs_value | |
| else: | |
| return config.audio.max_abs_value * ((S - config.audio.min_level_db) / (-config.audio.min_level_db)) | |
| def _denormalize(D): | |
| if config.audio.allow_clipping_in_normalization: | |
| if config.audio.symmetric_mels: | |
| return ( | |
| (np.clip(D, -config.audio.max_abs_value, config.audio.max_abs_value) + config.audio.max_abs_value) | |
| * -config.audio.min_level_db | |
| / (2 * config.audio.max_abs_value) | |
| ) + config.audio.min_level_db | |
| else: | |
| return ( | |
| np.clip(D, 0, config.audio.max_abs_value) * -config.audio.min_level_db / config.audio.max_abs_value | |
| ) + config.audio.min_level_db | |
| if config.audio.symmetric_mels: | |
| return ( | |
| (D + config.audio.max_abs_value) * -config.audio.min_level_db / (2 * config.audio.max_abs_value) | |
| ) + config.audio.min_level_db | |
| else: | |
| return (D * -config.audio.min_level_db / config.audio.max_abs_value) + config.audio.min_level_db | |
| def get_melspec_overlap(audio_samples, melspec_length=52): | |
| mel_spec_overlap = melspectrogram(audio_samples.numpy()) | |
| mel_spec_overlap = torch.from_numpy(mel_spec_overlap) | |
| i = 0 | |
| mel_spec_overlap_list = [] | |
| while i + melspec_length < mel_spec_overlap.shape[1] - 3: | |
| mel_spec_overlap_list.append(mel_spec_overlap[:, i : i + melspec_length].unsqueeze(0)) | |
| i += 3 | |
| mel_spec_overlap = torch.stack(mel_spec_overlap_list) | |
| return mel_spec_overlap | |