Spaces:
Running
Running
# Adapted from https://github.com/joonson/syncnet_python/blob/master/SyncNetInstance.py | |
import torch | |
import numpy | |
import time, pdb, argparse, subprocess, os, math, glob | |
import cv2 | |
import python_speech_features | |
from scipy import signal | |
from scipy.io import wavfile | |
from .syncnet import S | |
from shutil import rmtree | |
# ==================== Get OFFSET ==================== | |
# Video 25 FPS, Audio 16000HZ | |
def calc_pdist(feat1, feat2, vshift=10): | |
win_size = vshift * 2 + 1 | |
feat2p = torch.nn.functional.pad(feat2, (0, 0, vshift, vshift)) | |
dists = [] | |
for i in range(0, len(feat1)): | |
dists.append( | |
torch.nn.functional.pairwise_distance(feat1[[i], :].repeat(win_size, 1), feat2p[i : i + win_size, :]) | |
) | |
return dists | |
# ==================== MAIN DEF ==================== | |
class SyncNetEval(torch.nn.Module): | |
def __init__(self, dropout=0, num_layers_in_fc_layers=1024, device="cpu"): | |
super().__init__() | |
self.__S__ = S(num_layers_in_fc_layers=num_layers_in_fc_layers).to(device) | |
self.device = device | |
def evaluate(self, video_path, temp_dir="temp", batch_size=20, vshift=15): | |
self.__S__.eval() | |
# ========== ========== | |
# Convert files | |
# ========== ========== | |
if os.path.exists(temp_dir): | |
rmtree(temp_dir) | |
os.makedirs(temp_dir) | |
# temp_video_path = os.path.join(temp_dir, "temp.mp4") | |
# command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -vf scale='224:224' {temp_video_path}" | |
# subprocess.call(command, shell=True) | |
command = ( | |
f"ffmpeg -loglevel error -nostdin -y -i {video_path} -f image2 {os.path.join(temp_dir, '%06d.jpg')}" | |
) | |
subprocess.call(command, shell=True, stdout=None) | |
command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(temp_dir, 'audio.wav')}" | |
subprocess.call(command, shell=True, stdout=None) | |
# ========== ========== | |
# Load video | |
# ========== ========== | |
images = [] | |
flist = glob.glob(os.path.join(temp_dir, "*.jpg")) | |
flist.sort() | |
for fname in flist: | |
img_input = cv2.imread(fname) | |
img_input = cv2.resize(img_input, (224, 224)) # HARD CODED, CHANGE BEFORE RELEASE | |
images.append(img_input) | |
im = numpy.stack(images, axis=3) | |
im = numpy.expand_dims(im, axis=0) | |
im = numpy.transpose(im, (0, 3, 4, 1, 2)) | |
imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float()) | |
# ========== ========== | |
# Load audio | |
# ========== ========== | |
sample_rate, audio = wavfile.read(os.path.join(temp_dir, "audio.wav")) | |
mfcc = zip(*python_speech_features.mfcc(audio, sample_rate)) | |
mfcc = numpy.stack([numpy.array(i) for i in mfcc]) | |
cc = numpy.expand_dims(numpy.expand_dims(mfcc, axis=0), axis=0) | |
cct = torch.autograd.Variable(torch.from_numpy(cc.astype(float)).float()) | |
# ========== ========== | |
# Check audio and video input length | |
# ========== ========== | |
# if (float(len(audio)) / 16000) != (float(len(images)) / 25): | |
# print( | |
# "WARNING: Audio (%.4fs) and video (%.4fs) lengths are different." | |
# % (float(len(audio)) / 16000, float(len(images)) / 25) | |
# ) | |
min_length = min(len(images), math.floor(len(audio) / 640)) | |
# ========== ========== | |
# Generate video and audio feats | |
# ========== ========== | |
lastframe = min_length - 5 | |
im_feat = [] | |
cc_feat = [] | |
tS = time.time() | |
for i in range(0, lastframe, batch_size): | |
im_batch = [imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + batch_size))] | |
im_in = torch.cat(im_batch, 0) | |
im_out = self.__S__.forward_lip(im_in.to(self.device)) | |
im_feat.append(im_out.data.cpu()) | |
cc_batch = [ | |
cct[:, :, :, vframe * 4 : vframe * 4 + 20] for vframe in range(i, min(lastframe, i + batch_size)) | |
] | |
cc_in = torch.cat(cc_batch, 0) | |
cc_out = self.__S__.forward_aud(cc_in.to(self.device)) | |
cc_feat.append(cc_out.data.cpu()) | |
im_feat = torch.cat(im_feat, 0) | |
cc_feat = torch.cat(cc_feat, 0) | |
# ========== ========== | |
# Compute offset | |
# ========== ========== | |
dists = calc_pdist(im_feat, cc_feat, vshift=vshift) | |
mean_dists = torch.mean(torch.stack(dists, 1), 1) | |
min_dist, minidx = torch.min(mean_dists, 0) | |
av_offset = vshift - minidx | |
conf = torch.median(mean_dists) - min_dist | |
fdist = numpy.stack([dist[minidx].numpy() for dist in dists]) | |
# fdist = numpy.pad(fdist, (3,3), 'constant', constant_values=15) | |
fconf = torch.median(mean_dists).numpy() - fdist | |
framewise_conf = signal.medfilt(fconf, kernel_size=9) | |
# numpy.set_printoptions(formatter={"float": "{: 0.3f}".format}) | |
rmtree(temp_dir) | |
return av_offset.item(), min_dist.item(), conf.item() | |
def extract_feature(self, opt, videofile): | |
self.__S__.eval() | |
# ========== ========== | |
# Load video | |
# ========== ========== | |
cap = cv2.VideoCapture(videofile) | |
frame_num = 1 | |
images = [] | |
while frame_num: | |
frame_num += 1 | |
ret, image = cap.read() | |
if ret == 0: | |
break | |
images.append(image) | |
im = numpy.stack(images, axis=3) | |
im = numpy.expand_dims(im, axis=0) | |
im = numpy.transpose(im, (0, 3, 4, 1, 2)) | |
imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float()) | |
# ========== ========== | |
# Generate video feats | |
# ========== ========== | |
lastframe = len(images) - 4 | |
im_feat = [] | |
tS = time.time() | |
for i in range(0, lastframe, opt.batch_size): | |
im_batch = [ | |
imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + opt.batch_size)) | |
] | |
im_in = torch.cat(im_batch, 0) | |
im_out = self.__S__.forward_lipfeat(im_in.to(self.device)) | |
im_feat.append(im_out.data.cpu()) | |
im_feat = torch.cat(im_feat, 0) | |
# ========== ========== | |
# Compute offset | |
# ========== ========== | |
print("Compute time %.3f sec." % (time.time() - tS)) | |
return im_feat | |
def loadParameters(self, path): | |
loaded_state = torch.load(path, map_location=lambda storage, loc: storage) | |
self_state = self.__S__.state_dict() | |
for name, param in loaded_state.items(): | |
self_state[name].copy_(param) | |