LatentSync / eval /syncnet /syncnet_eval.py
fffiloni's picture
Migrated from GitHub
3650c12 verified
raw
history blame
6.87 kB
# Adapted from https://github.com/joonson/syncnet_python/blob/master/SyncNetInstance.py
import torch
import numpy
import time, pdb, argparse, subprocess, os, math, glob
import cv2
import python_speech_features
from scipy import signal
from scipy.io import wavfile
from .syncnet import S
from shutil import rmtree
# ==================== Get OFFSET ====================
# Video 25 FPS, Audio 16000HZ
def calc_pdist(feat1, feat2, vshift=10):
win_size = vshift * 2 + 1
feat2p = torch.nn.functional.pad(feat2, (0, 0, vshift, vshift))
dists = []
for i in range(0, len(feat1)):
dists.append(
torch.nn.functional.pairwise_distance(feat1[[i], :].repeat(win_size, 1), feat2p[i : i + win_size, :])
)
return dists
# ==================== MAIN DEF ====================
class SyncNetEval(torch.nn.Module):
def __init__(self, dropout=0, num_layers_in_fc_layers=1024, device="cpu"):
super().__init__()
self.__S__ = S(num_layers_in_fc_layers=num_layers_in_fc_layers).to(device)
self.device = device
def evaluate(self, video_path, temp_dir="temp", batch_size=20, vshift=15):
self.__S__.eval()
# ========== ==========
# Convert files
# ========== ==========
if os.path.exists(temp_dir):
rmtree(temp_dir)
os.makedirs(temp_dir)
# temp_video_path = os.path.join(temp_dir, "temp.mp4")
# command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -vf scale='224:224' {temp_video_path}"
# subprocess.call(command, shell=True)
command = (
f"ffmpeg -loglevel error -nostdin -y -i {video_path} -f image2 {os.path.join(temp_dir, '%06d.jpg')}"
)
subprocess.call(command, shell=True, stdout=None)
command = f"ffmpeg -loglevel error -nostdin -y -i {video_path} -async 1 -ac 1 -vn -acodec pcm_s16le -ar 16000 {os.path.join(temp_dir, 'audio.wav')}"
subprocess.call(command, shell=True, stdout=None)
# ========== ==========
# Load video
# ========== ==========
images = []
flist = glob.glob(os.path.join(temp_dir, "*.jpg"))
flist.sort()
for fname in flist:
img_input = cv2.imread(fname)
img_input = cv2.resize(img_input, (224, 224)) # HARD CODED, CHANGE BEFORE RELEASE
images.append(img_input)
im = numpy.stack(images, axis=3)
im = numpy.expand_dims(im, axis=0)
im = numpy.transpose(im, (0, 3, 4, 1, 2))
imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
# ========== ==========
# Load audio
# ========== ==========
sample_rate, audio = wavfile.read(os.path.join(temp_dir, "audio.wav"))
mfcc = zip(*python_speech_features.mfcc(audio, sample_rate))
mfcc = numpy.stack([numpy.array(i) for i in mfcc])
cc = numpy.expand_dims(numpy.expand_dims(mfcc, axis=0), axis=0)
cct = torch.autograd.Variable(torch.from_numpy(cc.astype(float)).float())
# ========== ==========
# Check audio and video input length
# ========== ==========
# if (float(len(audio)) / 16000) != (float(len(images)) / 25):
# print(
# "WARNING: Audio (%.4fs) and video (%.4fs) lengths are different."
# % (float(len(audio)) / 16000, float(len(images)) / 25)
# )
min_length = min(len(images), math.floor(len(audio) / 640))
# ========== ==========
# Generate video and audio feats
# ========== ==========
lastframe = min_length - 5
im_feat = []
cc_feat = []
tS = time.time()
for i in range(0, lastframe, batch_size):
im_batch = [imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + batch_size))]
im_in = torch.cat(im_batch, 0)
im_out = self.__S__.forward_lip(im_in.to(self.device))
im_feat.append(im_out.data.cpu())
cc_batch = [
cct[:, :, :, vframe * 4 : vframe * 4 + 20] for vframe in range(i, min(lastframe, i + batch_size))
]
cc_in = torch.cat(cc_batch, 0)
cc_out = self.__S__.forward_aud(cc_in.to(self.device))
cc_feat.append(cc_out.data.cpu())
im_feat = torch.cat(im_feat, 0)
cc_feat = torch.cat(cc_feat, 0)
# ========== ==========
# Compute offset
# ========== ==========
dists = calc_pdist(im_feat, cc_feat, vshift=vshift)
mean_dists = torch.mean(torch.stack(dists, 1), 1)
min_dist, minidx = torch.min(mean_dists, 0)
av_offset = vshift - minidx
conf = torch.median(mean_dists) - min_dist
fdist = numpy.stack([dist[minidx].numpy() for dist in dists])
# fdist = numpy.pad(fdist, (3,3), 'constant', constant_values=15)
fconf = torch.median(mean_dists).numpy() - fdist
framewise_conf = signal.medfilt(fconf, kernel_size=9)
# numpy.set_printoptions(formatter={"float": "{: 0.3f}".format})
rmtree(temp_dir)
return av_offset.item(), min_dist.item(), conf.item()
def extract_feature(self, opt, videofile):
self.__S__.eval()
# ========== ==========
# Load video
# ========== ==========
cap = cv2.VideoCapture(videofile)
frame_num = 1
images = []
while frame_num:
frame_num += 1
ret, image = cap.read()
if ret == 0:
break
images.append(image)
im = numpy.stack(images, axis=3)
im = numpy.expand_dims(im, axis=0)
im = numpy.transpose(im, (0, 3, 4, 1, 2))
imtv = torch.autograd.Variable(torch.from_numpy(im.astype(float)).float())
# ========== ==========
# Generate video feats
# ========== ==========
lastframe = len(images) - 4
im_feat = []
tS = time.time()
for i in range(0, lastframe, opt.batch_size):
im_batch = [
imtv[:, :, vframe : vframe + 5, :, :] for vframe in range(i, min(lastframe, i + opt.batch_size))
]
im_in = torch.cat(im_batch, 0)
im_out = self.__S__.forward_lipfeat(im_in.to(self.device))
im_feat.append(im_out.data.cpu())
im_feat = torch.cat(im_feat, 0)
# ========== ==========
# Compute offset
# ========== ==========
print("Compute time %.3f sec." % (time.time() - tS))
return im_feat
def loadParameters(self, path):
loaded_state = torch.load(path, map_location=lambda storage, loc: storage)
self_state = self.__S__.state_dict()
for name, param in loaded_state.items():
self_state[name].copy_(param)