Spaces:
Running
Running
# Adapted from https://github.com/universome/fvd-comparison/blob/master/our_fvd.py | |
from typing import Tuple | |
import scipy | |
import numpy as np | |
import torch | |
def compute_fvd(feats_fake: np.ndarray, feats_real: np.ndarray) -> float: | |
mu_gen, sigma_gen = compute_stats(feats_fake) | |
mu_real, sigma_real = compute_stats(feats_real) | |
m = np.square(mu_gen - mu_real).sum() | |
s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member | |
fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2)) | |
return float(fid) | |
def compute_stats(feats: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: | |
mu = feats.mean(axis=0) # [d] | |
sigma = np.cov(feats, rowvar=False) # [d, d] | |
return mu, sigma | |
def compute_our_fvd(videos_fake: np.ndarray, videos_real: np.ndarray, device: str = "cuda") -> float: | |
i3d_path = "checkpoints/auxiliary/i3d_torchscript.pt" | |
i3d_kwargs = dict( | |
rescale=False, resize=False, return_features=True | |
) # Return raw features before the softmax layer. | |
with open(i3d_path, "rb") as f: | |
i3d_model = torch.jit.load(f).eval().to(device) | |
videos_fake = videos_fake.permute(0, 4, 1, 2, 3).to(device) | |
videos_real = videos_real.permute(0, 4, 1, 2, 3).to(device) | |
feats_fake = i3d_model(videos_fake, **i3d_kwargs).cpu().numpy() | |
feats_real = i3d_model(videos_real, **i3d_kwargs).cpu().numpy() | |
return compute_fvd(feats_fake, feats_real) | |
def main(): | |
# input shape: (b, f, h, w, c) | |
videos_fake = torch.rand(10, 16, 224, 224, 3) | |
videos_real = torch.rand(10, 16, 224, 224, 3) | |
our_fvd_result = compute_our_fvd(videos_fake, videos_real) | |
print(f"[FVD scores] Ours: {our_fvd_result}") | |
if __name__ == "__main__": | |
main() | |