|
""" Basic Agent Evaluation Runner""" |
|
import os |
|
import inspect |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from langchain_core.messages import HumanMessage |
|
|
|
|
|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
|
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
|
|
|
|
load_dotenv() |
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> int: |
|
"""Divide two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
system_prompt = """You are an AI assistant that answers questions directly and concisely. |
|
-Respond with only the factual answer, no prefixes, explanations, or extra text. |
|
-Do not write reflection in the response just one or few words in the answer. |
|
-Do not write for example the surname is Agnew but instead write Agnew directy. |
|
-Do not write I searched wikipedia ... but write the answer in one or few words. |
|
-Do not add separators to the answer. |
|
-Answer with complete name of the country. For instance use France instead FRA. |
|
-If the words in the question are inversed like siht si, reverse the question than answer what is demaded. |
|
Examples: |
|
- User: Who is the CEO of Tesla? |
|
- AI: Elon Musk |
|
- User: Capital of Japan? |
|
- AI: Tokyo |
|
""" |
|
|
|
|
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
''' |
|
# build a retriever |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 |
|
supabase: Client = create_client( |
|
os.environ.get("SUPABASE_URL"), |
|
os.environ.get("SUPABASE_SERVICE_KEY")) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding= embeddings, |
|
table_name="documents", |
|
query_name="match_documents_langchain", |
|
) |
|
create_retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="Question Search", |
|
description="A tool to retrieve similar questions from a vector store.", |
|
) |
|
''' |
|
|
|
|
|
tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
wiki_search, |
|
web_search, |
|
arvix_search, |
|
] |
|
|
|
|
|
def build_graph(): |
|
"""Build the graph""" |
|
|
|
|
|
|
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
|
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "assistant") |
|
|
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
) |
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
return builder.compile() |
|
''' |
|
# test |
|
if __name__ == "__main__": |
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" |
|
# Build the graph |
|
graph = build_graph(provider="groq") |
|
# Run the graph |
|
messages = [HumanMessage(content=question)] |
|
messages = graph.invoke({"messages": messages}) |
|
for m in messages["messages"]: |
|
m.pretty_print() |
|
|
|
''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
|
|
|
class BasicAgent: |
|
"""A langgraph agent.""" |
|
def __init__(self): |
|
print("BasicAgent initialized.") |
|
self.graph = build_graph() |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
|
|
messages = [HumanMessage(content=question)] |
|
messages = self.graph.invoke({"messages": messages}) |
|
answer = messages['messages'][-1].content |
|
return answer[14:] |
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(agent_code) |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |