mdj1412's picture
Update app.py
213ce70
raw
history blame
7.2 kB
import gradio as gr
import fasttext
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
import pandas as pd
import torch
id2label = {0: "NEGATIVE", 1: "POSITIVE"}
label2id = {"NEGATIVE": 0, "POSITIVE": 1}
title = "Movie Review Score Discriminator"
description = "It is a program that classifies whether it is positive or negative by entering movie reviews. \
You can choose between the Korean version and the English version. \
It also provides a version called ""Default"", which determines whether it is Korean or English and predicts it."
class LanguageIdentification:
def __init__(self):
pretrained_lang_model = "./lid.176.ftz"
self.model = fasttext.load_model(pretrained_lang_model)
def predict_lang(self, text):
predictions = self.model.predict(text, k=200) # returns top 200 matching languages
return predictions
LANGUAGE = LanguageIdentification()
def tokenized_data(tokenizer, inputs):
return tokenizer.batch_encode_plus(
[inputs],
return_tensors="pt",
padding="max_length",
max_length=64,
truncation=True)
examples = []
df = pd.read_csv('examples.csv', sep='\t', index_col='Unnamed: 0')
np.random.seed(100)
idx = np.random.choice(50, size=5, replace=False)
eng_examples = [ ['Eng', df.iloc[i, 0]] for i in idx ]
kor_examples = [ ['Kor', df.iloc[i, 1]] for i in idx ]
examples = eng_examples + kor_examples
eng_model_name = "roberta-base"
eng_step = 1900
eng_tokenizer = AutoTokenizer.from_pretrained(eng_model_name)
eng_file_name = "{}-{}.pt".format(eng_model_name, eng_step)
eng_state_dict = torch.load(eng_file_name)
eng_model = AutoModelForSequenceClassification.from_pretrained(
eng_model_name, num_labels=2, id2label=id2label, label2id=label2id,
state_dict=eng_state_dict
)
kor_model_name = "klue/roberta-small"
kor_step = 2400
kor_tokenizer = AutoTokenizer.from_pretrained(kor_model_name)
kor_file_name = "{}-{}.pt".format(kor_model_name.replace('/', '_'), kor_step)
kor_state_dict = torch.load(kor_file_name)
kor_model = AutoModelForSequenceClassification.from_pretrained(
kor_model_name, num_labels=2, id2label=id2label, label2id=label2id,
state_dict=kor_state_dict
)
def builder(Lang, Text):
percent_kor, percent_eng = 0, 0
text_list = Text.split(' ')
# [ output_1 ]
if Lang == 'Default':
pred = LANGUAGE.predict_lang(Text)
if '__label__en' in pred[0]:
Lang = 'Eng'
idx = pred[0].index('__label__en')
p_eng = pred[1][idx]
if '__label__ko' in pred[0]:
Lang = 'Kor'
idx = pred[0].index('__label__ko')
p_kor = pred[1][idx]
# Normalize Percentage
percent_kor = p_kor / (p_kor+p_eng)
percent_eng = p_eng / (p_kor+p_eng)
if Lang == 'Eng':
model = eng_model
tokenizer = eng_tokenizer
if percent_eng==0: percent_eng=1
if Lang == 'Kor':
model = kor_model
tokenizer = kor_tokenizer
if percent_kor==0: percent_kor=1
# [ output_2 ]
inputs = tokenized_data(tokenizer, Text)
model.eval()
with torch.no_grad():
logits = model(input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask']).logits
m = torch.nn.Softmax(dim=1)
output = m(logits)
# print(logits, output)
# [ output_3 ]
output_analysis = []
for word in text_list:
tokenized_word = tokenized_data(tokenizer, word)
with torch.no_grad():
logit = model(input_ids=tokenized_word['input_ids'],
attention_mask=tokenized_word['attention_mask']).logits
word_output = m(logit)
if word_output[0][1] > 0.99:
output_analysis.append( (word, '+++') )
elif word_output[0][1] > 0.9:
output_analysis.append( (word, '++') )
elif word_output[0][1] > 0.8:
output_analysis.append( (word, '+') )
elif word_output[0][1] < 0.01:
output_analysis.append( (word, '---') )
elif word_output[0][1] < 0.1:
output_analysis.append( (word, '--') )
elif word_output[0][1] < 0.2:
output_analysis.append( (word, '-') )
else:
output_analysis.append( (word, None) )
return [ {'Kor': percent_kor, 'Eng': percent_eng},
{id2label[1]: output[0][1].item(), id2label[0]: output[0][0].item()},
output_analysis ]
# prediction = torch.argmax(logits, axis=1)
return id2label[prediction.item()]
# demo3 = gr.Interface.load("models/mdj1412/movie_review_score_discriminator_eng", inputs="text", outputs="text",
# title=title, theme="peach",
# allow_flagging="auto",
# description=description, examples=examples)
demo = gr.Interface(builder, inputs=[gr.inputs.Dropdown(['Default', 'Eng', 'Kor']), gr.Textbox(placeholder="๋ฆฌ๋ทฐ๋ฅผ ์ž…๋ ฅํ•˜์‹œ์˜ค.")],
outputs=[ gr.Label(num_top_classes=3, label='Lang'),
gr.Label(num_top_classes=2, label='Result'),
gr.HighlightedText(label="Analysis", combine_adjacent=False)
.style(color_map={"+++": "#CF0000", "++": "#FF3232", "+": "#FFD4D4", "---": "#0004FE", "--": "#4C47FF", "-": "#BEBDFF"}) ],
# outputs='label',
title=title, description=description, examples=examples)
with gr.Blocks() as demo1:
gr.Markdown(
"""
<h1 align="center">
Movie Review Score Discriminator
</h1>
""")
with gr.Accordion("Open for More!"):
gr.Markdown(
"""
๋‚ด์šฉ์€ ์•„์ง ๋ฐ”๊พธ์ง€ ์•Š์•˜์Œ (ํ˜•์‹๋งŒ ์ฐธ๊ณ )
๋ฌธ์ œ์  : ํด๋ฆฌ์–ด ํด๋ฆญ์ด ์›ํ•˜๋Š”๋Œ€๋กœ ์•ˆ๋จ
It is a program that classifies whether it is positive or negative by entering movie reviews. \
You can choose between the Korean version and the English version. \
It also provides a version called ""Default"", which determines whether it is Korean or English and predicts it.
""")
with gr.Row():
with gr.Column():
inputs_1 = gr.inputs.Dropdown(['Default', 'Eng', 'Kor'])
inputs_2 = gr.Textbox(placeholder="๋ฆฌ๋ทฐ๋ฅผ ์ž…๋ ฅํ•˜์‹œ์˜ค.")
with gr.Row():
btn2 = gr.Button("ํด๋ฆฌ์–ด")
btn = gr.Button("์ œ์ถœํ•˜๊ธฐ")
with gr.Column():
output_1 = gr.Label(num_top_classes=3, label='Lang')
output_2 = gr.Label(num_top_classes=2, label='Result')
output_3 = gr.HighlightedText(label="Analysis", combine_adjacent=False) \
.style(color_map={"+++": "#CF0000", "++": "#FF3232", "+": "#FFD4D4", "---": "#0004FE", "--": "#4C47FF", "-": "#BEBDFF"})
btn.click(fn=builder, inputs=[inputs_1, inputs_2], outputs=[output_1, output_2, output_3])
gr.Examples(examples, inputs=[inputs_1, inputs_2])
if __name__ == "__main__":
# print(examples)
# demo.launch()
demo1.launch()