mckabue's picture
RE_UPLOAD-REBUILD-RESTART
50bee63 verified
import traceback
import gradio as gr
from utils.get_RGB_image import get_RGB_image, is_online_file, steam_online_file
import layoutparser as lp
from PIL import Image
from utils.get_features import get_features
from imagehash import average_hash
from sklearn.metrics.pairwise import cosine_similarity
from utils.visualize_bboxes_on_image import visualize_bboxes_on_image
import fitz
label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer',
5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'}
label_names = list(label_map.values())
color_map = {'Caption': '#FF0000', 'Footnote': '#00FF00', 'Formula': '#0000FF', 'List-item': '#FF00FF', 'Page-footer': '#FFFF00',
'Page-header': '#000000', 'Picture': '#FFFFFF', 'Section-header': '#40E0D0', 'Table': '#F28030', 'Text': '#7F00FF', 'Title': '#C0C0C0'}
cache = {
'output_document_image_1_hash': None,
'output_document_image_2_hash': None,
'document_image_1_features': None,
'document_image_2_features': None,
'original_document_image_1': None,
'original_document_image_2': None
}
pre_message_style = 'border:2px solid pink;padding:4px;border-radius:4px;font-size: 16px;font-weight: 700;background-image: linear-gradient(to bottom right, #e0e619, #ffffff, #FF77CC, rgb(255, 122, 89));'
visualize_bboxes_on_image_kwargs = {
'label_text_color': 'white',
'label_fill_color': 'black',
'label_text_size': 12,
'label_text_padding': 3,
'label_rectangle_left_margin': 0,
'label_rectangle_top_margin': 0
}
vectors_types = ['vectors', 'weighted_vectors',
'reduced_vectors', 'reduced_weighted_vectors']
def similarity_fn(model: lp.Detectron2LayoutModel, document_image_1: Image.Image, document_image_2: Image.Image, vectors_type: str):
message = None
annotations = {
'predicted_bboxes': 'predicted_bboxes' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_bboxes',
'predicted_scores': 'predicted_scores' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_scores',
'predicted_labels': 'predicted_labels' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_labels',
}
show_vectors_type = False
try:
if document_image_1 is None or document_image_2 is None:
message = 'Please load both the documents to compare.'
gr.Info(message)
else:
input_document_image_1_hash = str(average_hash(document_image_1))
input_document_image_2_hash = str(average_hash(document_image_2))
if input_document_image_1_hash == cache['output_document_image_1_hash']:
document_image_1_features = cache['document_image_1_features']
document_image_1 = cache['original_document_image_1']
else:
gr.Info('Generating features for document 1')
document_image_1_features = get_features(
document_image_1, model, label_names)
cache['document_image_1_features'] = document_image_1_features
cache['original_document_image_1'] = document_image_1
if input_document_image_2_hash == cache['output_document_image_2_hash']:
document_image_2_features = cache['document_image_2_features']
document_image_2 = cache['original_document_image_2']
else:
gr.Info('Generating features for document 2')
document_image_2_features = get_features(
document_image_2, model, label_names)
cache['document_image_2_features'] = document_image_2_features
cache['original_document_image_2'] = document_image_2
gr.Info('Calculating similarity')
[[similarity]] = cosine_similarity(
[
cache['document_image_1_features'][vectors_type]
],
[
cache['document_image_2_features'][vectors_type]
])
message = f'Similarity between the two documents is: {round(similarity, 4)}'
gr.Info(message)
gr.Info('Visualizing the bounding boxes for the predicted layout elements on the documents.')
document_image_1 = visualize_bboxes_on_image(
image=document_image_1,
bboxes=cache['document_image_1_features'][annotations['predicted_bboxes']],
labels=[f'{label}, score:{round(score, 2)}' for label, score in zip(
cache['document_image_1_features'][annotations['predicted_labels']],
cache['document_image_1_features'][annotations['predicted_scores']])],
bbox_outline_color=[
color_map[label] for label in cache['document_image_1_features'][annotations['predicted_labels']]],
bbox_fill_color=[
(color_map[label], 50) for label in cache['document_image_1_features'][annotations['predicted_labels']]],
**visualize_bboxes_on_image_kwargs)
document_image_2 = visualize_bboxes_on_image(
image=document_image_2,
bboxes=cache['document_image_2_features'][annotations['predicted_bboxes']],
labels=[f'{label}, score:{round(score, 2)}' for label, score in zip(
cache['document_image_2_features'][annotations['predicted_labels']],
cache['document_image_2_features'][annotations['predicted_scores']])],
bbox_outline_color=[
color_map[label] for label in cache['document_image_2_features'][annotations['predicted_labels']]],
bbox_fill_color=[
(color_map[label], 50) for label in cache['document_image_2_features'][annotations['predicted_labels']]],
**visualize_bboxes_on_image_kwargs)
cache['output_document_image_1_hash'] = str(
average_hash(document_image_1))
cache['output_document_image_2_hash'] = str(
average_hash(document_image_2))
show_vectors_type = True
except Exception as e:
message = f'<pre style="overflow:auto;">{traceback.format_exc()}</pre>'
gr.Info(message)
return [
gr.HTML(f'<div style="{pre_message_style}">{message}</div>', visible=True),
document_image_1,
document_image_2,
gr.Dropdown(visible=show_vectors_type)
]
def load_image(filename, page=0):
try:
image = None
first_error = None
try:
if (is_online_file(filename)):
pixmap = fitz.open("pdf", steam_online_file(filename))[page].get_pixmap()
else:
pixmap = fitz.open(filename)[page].get_pixmap()
image = Image.frombytes("RGB", [pixmap.width, pixmap.height], pixmap.samples)
except Exception as e:
first_error = e
image = get_RGB_image(filename)
return [
image,
None
]
except Exception as second_error:
error = f'{traceback.format_exc()}\n\nFirst Error:\n{first_error}\n\nSecond Error:\n{second_error}'
return [None, gr.HTML(value=error, visible=True)]
def preview_url(url, page=0):
[image, error] = load_image(url, page=page)
if image:
return [gr.Tabs(selected=0), image, error]
else:
return [gr.Tabs(selected=1), image, error]
def document_view(document_number: int, examples: list[str] = []):
gr.HTML(value=f'<h4>Load the {"first" if document_number == 1 else "second"} PDF or Document Image</h4>', elem_classes=[
'center'])
gr.HTML(value=f'<p>Click the button below to upload Upload PDF or Document Image or cleck the URL tab to add using link.</p>', elem_classes=[
'center'])
with gr.Tabs() as document_tabs:
with gr.Tab("From Image", id=0):
document = gr.Image(
type="pil", label=f"Document {document_number}", visible=False, interactive=False, show_download_button=True)
document_error_message = gr.HTML(
label="Error Message", visible=False)
document_preview = gr.UploadButton(
label="Upload PDF or Document Image",
file_types=["image", ".pdf"],
file_count="single")
with gr.Tab("From URL", id=1):
document_url = gr.Textbox(
label=f"Document {document_number} URL",
info="Paste a Link/URL to PDF or Document Image",
placeholder="https://datasets-server.huggingface.co/.../image.jpg")
document_url_error_message = gr.HTML(
label="Error Message", visible=False)
document_url_preview = gr.Button(
value="Preview Link Document", variant="secondary")
if len(examples) > 0:
gr.Examples(
examples=examples,
inputs=document,
label='Select any of these test document images')
document_preview.upload(
fn=lambda file: load_image(file.name),
inputs=[document_preview],
outputs=[document, document_error_message])
document_url_preview.click(
fn=preview_url,
inputs=[document_url],
outputs=[document_tabs, document, document_url_error_message])
document.change(
fn = lambda image: gr.Image(value=image, visible=True) if image else gr.Image(value=None, visible=False),
inputs = [document],
outputs = [document])
return document
def app(*, model_path:str, config_path:str, examples: list[str], debug=False):
model: lp.Detectron2LayoutModel = lp.Detectron2LayoutModel(
config_path=config_path,
model_path=model_path,
label_map=label_map)
title = 'Document Similarity Search Using Visual Layout Features'
description = f"<h2>{title}<h2>"
css = '''
image { max-height="86vh" !important; }
.center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; }
.hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; }
'''
with gr.Blocks(title=title, css=css) as interface:
with gr.Row():
gr.HTML(value=description, elem_classes=['center'])
with gr.Row(equal_height=False):
with gr.Column():
document_1_image = document_view(1, examples)
with gr.Column():
document_2_image = document_view(2, examples)
gr.HTML('<hr/>', elem_classes=['hr'])
with gr.Row(elem_classes=['center']):
with gr.Column():
submit = gr.Button(value="Get Similarity", variant="primary")
with gr.Column():
vectors_type = gr.Dropdown(
choices=vectors_types,
value=vectors_types[0],
visible=False,
label="Vectors Type",
info="Select the Vectors Type to use for Similarity Calculation")
similarity_output = gr.HTML(
label="Similarity Score", visible=False)
kwargs = {
'fn': lambda document_1_image, document_2_image, vectors_type: similarity_fn(
model,
document_1_image,
document_2_image,
vectors_type),
'inputs': [document_1_image, document_2_image, vectors_type],
'outputs': [similarity_output, document_1_image, document_2_image, vectors_type]
}
submit.click(**kwargs)
vectors_type.change(**kwargs)
return interface.launch(debug=debug)