import traceback import gradio as gr from utils.get_RGB_image import get_RGB_image, is_online_file, steam_online_file import layoutparser as lp from PIL import Image from utils.get_features import get_features from imagehash import average_hash from sklearn.metrics.pairwise import cosine_similarity from utils.visualize_bboxes_on_image import visualize_bboxes_on_image import fitz label_map = {0: 'Caption', 1: 'Footnote', 2: 'Formula', 3: 'List-item', 4: 'Page-footer', 5: 'Page-header', 6: 'Picture', 7: 'Section-header', 8: 'Table', 9: 'Text', 10: 'Title'} label_names = list(label_map.values()) color_map = {'Caption': '#FF0000', 'Footnote': '#00FF00', 'Formula': '#0000FF', 'List-item': '#FF00FF', 'Page-footer': '#FFFF00', 'Page-header': '#000000', 'Picture': '#FFFFFF', 'Section-header': '#40E0D0', 'Table': '#F28030', 'Text': '#7F00FF', 'Title': '#C0C0C0'} cache = { 'output_document_image_1_hash': None, 'output_document_image_2_hash': None, 'document_image_1_features': None, 'document_image_2_features': None, 'original_document_image_1': None, 'original_document_image_2': None } pre_message_style = 'border:2px solid pink;padding:4px;border-radius:4px;font-size: 16px;font-weight: 700;background-image: linear-gradient(to bottom right, #e0e619, #ffffff, #FF77CC, rgb(255, 122, 89));' visualize_bboxes_on_image_kwargs = { 'label_text_color': 'white', 'label_fill_color': 'black', 'label_text_size': 12, 'label_text_padding': 3, 'label_rectangle_left_margin': 0, 'label_rectangle_top_margin': 0 } vectors_types = ['vectors', 'weighted_vectors', 'reduced_vectors', 'reduced_weighted_vectors'] def similarity_fn(model: lp.Detectron2LayoutModel, document_image_1: Image.Image, document_image_2: Image.Image, vectors_type: str): message = None annotations = { 'predicted_bboxes': 'predicted_bboxes' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_bboxes', 'predicted_scores': 'predicted_scores' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_scores', 'predicted_labels': 'predicted_labels' if vectors_type in ['vectors', 'weighted_vectors'] else 'reduced_predicted_labels', } show_vectors_type = False try: if document_image_1 is None or document_image_2 is None: message = 'Please load both the documents to compare.' gr.Info(message) else: input_document_image_1_hash = str(average_hash(document_image_1)) input_document_image_2_hash = str(average_hash(document_image_2)) if input_document_image_1_hash == cache['output_document_image_1_hash']: document_image_1_features = cache['document_image_1_features'] document_image_1 = cache['original_document_image_1'] else: gr.Info('Generating features for document 1') document_image_1_features = get_features( document_image_1, model, label_names) cache['document_image_1_features'] = document_image_1_features cache['original_document_image_1'] = document_image_1 if input_document_image_2_hash == cache['output_document_image_2_hash']: document_image_2_features = cache['document_image_2_features'] document_image_2 = cache['original_document_image_2'] else: gr.Info('Generating features for document 2') document_image_2_features = get_features( document_image_2, model, label_names) cache['document_image_2_features'] = document_image_2_features cache['original_document_image_2'] = document_image_2 gr.Info('Calculating similarity') [[similarity]] = cosine_similarity( [ cache['document_image_1_features'][vectors_type] ], [ cache['document_image_2_features'][vectors_type] ]) message = f'Similarity between the two documents is: {round(similarity, 4)}' gr.Info(message) gr.Info('Visualizing the bounding boxes for the predicted layout elements on the documents.') document_image_1 = visualize_bboxes_on_image( image=document_image_1, bboxes=cache['document_image_1_features'][annotations['predicted_bboxes']], labels=[f'{label}, score:{round(score, 2)}' for label, score in zip( cache['document_image_1_features'][annotations['predicted_labels']], cache['document_image_1_features'][annotations['predicted_scores']])], bbox_outline_color=[ color_map[label] for label in cache['document_image_1_features'][annotations['predicted_labels']]], bbox_fill_color=[ (color_map[label], 50) for label in cache['document_image_1_features'][annotations['predicted_labels']]], **visualize_bboxes_on_image_kwargs) document_image_2 = visualize_bboxes_on_image( image=document_image_2, bboxes=cache['document_image_2_features'][annotations['predicted_bboxes']], labels=[f'{label}, score:{round(score, 2)}' for label, score in zip( cache['document_image_2_features'][annotations['predicted_labels']], cache['document_image_2_features'][annotations['predicted_scores']])], bbox_outline_color=[ color_map[label] for label in cache['document_image_2_features'][annotations['predicted_labels']]], bbox_fill_color=[ (color_map[label], 50) for label in cache['document_image_2_features'][annotations['predicted_labels']]], **visualize_bboxes_on_image_kwargs) cache['output_document_image_1_hash'] = str( average_hash(document_image_1)) cache['output_document_image_2_hash'] = str( average_hash(document_image_2)) show_vectors_type = True except Exception as e: message = f'
{traceback.format_exc()}
' gr.Info(message) return [ gr.HTML(f'
{message}
', visible=True), document_image_1, document_image_2, gr.Dropdown(visible=show_vectors_type) ] def load_image(filename, page=0): try: image = None first_error = None try: if (is_online_file(filename)): pixmap = fitz.open("pdf", steam_online_file(filename))[page].get_pixmap() else: pixmap = fitz.open(filename)[page].get_pixmap() image = Image.frombytes("RGB", [pixmap.width, pixmap.height], pixmap.samples) except Exception as e: first_error = e image = get_RGB_image(filename) return [ image, None ] except Exception as second_error: error = f'{traceback.format_exc()}\n\nFirst Error:\n{first_error}\n\nSecond Error:\n{second_error}' return [None, gr.HTML(value=error, visible=True)] def preview_url(url, page=0): [image, error] = load_image(url, page=page) if image: return [gr.Tabs(selected=0), image, error] else: return [gr.Tabs(selected=1), image, error] def document_view(document_number: int, examples: list[str] = []): gr.HTML(value=f'

Load the {"first" if document_number == 1 else "second"} PDF or Document Image

', elem_classes=[ 'center']) gr.HTML(value=f'

Click the button below to upload Upload PDF or Document Image or cleck the URL tab to add using link.

', elem_classes=[ 'center']) with gr.Tabs() as document_tabs: with gr.Tab("From Image", id=0): document = gr.Image( type="pil", label=f"Document {document_number}", visible=False, interactive=False, show_download_button=True) document_error_message = gr.HTML( label="Error Message", visible=False) document_preview = gr.UploadButton( label="Upload PDF or Document Image", file_types=["image", ".pdf"], file_count="single") with gr.Tab("From URL", id=1): document_url = gr.Textbox( label=f"Document {document_number} URL", info="Paste a Link/URL to PDF or Document Image", placeholder="https://datasets-server.huggingface.co/.../image.jpg") document_url_error_message = gr.HTML( label="Error Message", visible=False) document_url_preview = gr.Button( value="Preview Link Document", variant="secondary") if len(examples) > 0: gr.Examples( examples=examples, inputs=document, label='Select any of these test document images') document_preview.upload( fn=lambda file: load_image(file.name), inputs=[document_preview], outputs=[document, document_error_message]) document_url_preview.click( fn=preview_url, inputs=[document_url], outputs=[document_tabs, document, document_url_error_message]) document.change( fn = lambda image: gr.Image(value=image, visible=True) if image else gr.Image(value=None, visible=False), inputs = [document], outputs = [document]) return document def app(*, model_path:str, config_path:str, examples: list[str], debug=False): model: lp.Detectron2LayoutModel = lp.Detectron2LayoutModel( config_path=config_path, model_path=model_path, label_map=label_map) title = 'Document Similarity Search Using Visual Layout Features' description = f"

{title}

" css = ''' image { max-height="86vh" !important; } .center { display: flex; flex: 1 1 auto; align-items: center; align-content: center; justify-content: center; justify-items: center; } .hr { width: 100%; display: block; padding: 0; margin: 0; background: gray; height: 4px; border: none; } ''' with gr.Blocks(title=title, css=css) as interface: with gr.Row(): gr.HTML(value=description, elem_classes=['center']) with gr.Row(equal_height=False): with gr.Column(): document_1_image = document_view(1, examples) with gr.Column(): document_2_image = document_view(2, examples) gr.HTML('
', elem_classes=['hr']) with gr.Row(elem_classes=['center']): with gr.Column(): submit = gr.Button(value="Get Similarity", variant="primary") with gr.Column(): vectors_type = gr.Dropdown( choices=vectors_types, value=vectors_types[0], visible=False, label="Vectors Type", info="Select the Vectors Type to use for Similarity Calculation") similarity_output = gr.HTML( label="Similarity Score", visible=False) kwargs = { 'fn': lambda document_1_image, document_2_image, vectors_type: similarity_fn( model, document_1_image, document_2_image, vectors_type), 'inputs': [document_1_image, document_2_image, vectors_type], 'outputs': [similarity_output, document_1_image, document_2_image, vectors_type] } submit.click(**kwargs) vectors_type.change(**kwargs) return interface.launch(debug=debug)