|
""" |
|
The script is based on https://github.com/facebookresearch/detectron2/blob/master/tools/train_net.py. |
|
""" |
|
|
|
import logging |
|
import os |
|
import json |
|
from collections import OrderedDict |
|
import torch |
|
import sys |
|
import detectron2.utils.comm as comm |
|
from detectron2.checkpoint import DetectionCheckpointer |
|
from detectron2.config import get_cfg |
|
|
|
from detectron2.data import MetadataCatalog, DatasetCatalog |
|
from detectron2.data.datasets import register_coco_instances |
|
|
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch |
|
from detectron2.evaluation import ( |
|
COCOEvaluator, |
|
DatasetEvaluators, |
|
SemSegEvaluator, |
|
verify_results, |
|
) |
|
from detectron2.modeling import GeneralizedRCNNWithTTA |
|
import pandas as pd |
|
|
|
class Trainer(DefaultTrainer): |
|
""" |
|
We use the "DefaultTrainer" which contains pre-defined default logic for |
|
standard training workflow. They may not work for you, especially if you |
|
are working on a new research project. In that case you can use the cleaner |
|
"SimpleTrainer", or write your own training loop. You can use |
|
"tools/plain_train_net.py" as an example. |
|
""" |
|
|
|
@classmethod |
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None): |
|
""" |
|
Returns: |
|
DatasetEvaluator or None |
|
|
|
It is not implemented by default. |
|
""" |
|
return COCOEvaluator(dataset_name, cfg, True, output_folder) |
|
|
|
@classmethod |
|
def test_with_TTA(cls, cfg, model): |
|
logger = logging.getLogger("detectron2.trainer") |
|
|
|
|
|
logger.info("Running inference with test-time augmentation ...") |
|
model = GeneralizedRCNNWithTTA(cfg, model) |
|
evaluators = [ |
|
cls.build_evaluator( |
|
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") |
|
) |
|
for name in cfg.DATASETS.TEST |
|
] |
|
res = cls.test(cfg, model, evaluators) |
|
res = OrderedDict({k + "_TTA": v for k, v in res.items()}) |
|
return res |
|
|
|
@classmethod |
|
def eval_and_save(cls, cfg, model): |
|
evaluators = [ |
|
cls.build_evaluator( |
|
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference") |
|
) |
|
for name in cfg.DATASETS.TEST |
|
] |
|
res = cls.test(cfg, model, evaluators) |
|
pd.DataFrame(res).to_csv(os.path.join(cfg.OUTPUT_DIR, 'eval.csv')) |
|
return res |
|
|
|
def setup(args): |
|
""" |
|
Create configs and perform basic setups. |
|
""" |
|
cfg = get_cfg() |
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
|
|
with open(args.json_annotation_train, 'r') as fp: |
|
anno_file = json.load(fp) |
|
|
|
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(anno_file["categories"]) |
|
del anno_file |
|
|
|
cfg.DATASETS.TRAIN = (f"{args.dataset_name}-train",) |
|
cfg.DATASETS.TEST = (f"{args.dataset_name}-val",) |
|
|
|
cfg.freeze() |
|
default_setup(cfg, args) |
|
return cfg |
|
|
|
|
|
def main(args): |
|
cfg = setup(args) |
|
|
|
if args.eval_only: |
|
model = Trainer.build_model(cfg) |
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( |
|
cfg.MODEL.WEIGHTS, resume=args.resume |
|
) |
|
res = Trainer.test(cfg, model) |
|
|
|
if cfg.TEST.AUG.ENABLED: |
|
res.update(Trainer.test_with_TTA(cfg, model)) |
|
if comm.is_main_process(): |
|
verify_results(cfg, res) |
|
|
|
|
|
pd.DataFrame(res).to_csv(f'{cfg.OUTPUT_DIR}/eval.csv') |
|
return res |
|
|
|
""" |
|
If you'd like to do anything fancier than the standard training logic, |
|
consider writing your own training loop (see plain_train_net.py) or |
|
subclassing the trainer. |
|
""" |
|
trainer = Trainer(cfg) |
|
trainer.resume_or_load(resume=args.resume) |
|
trainer.register_hooks( |
|
[hooks.EvalHook(0, lambda: trainer.eval_and_save(cfg, trainer.model))] |
|
) |
|
if cfg.TEST.AUG.ENABLED: |
|
trainer.register_hooks( |
|
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))] |
|
) |
|
return trainer.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = default_argument_parser() |
|
|
|
|
|
parser.add_argument("--dataset_name", default="", help="The Dataset Name") |
|
parser.add_argument("--json_annotation_train", default="", metavar="FILE", help="The path to the training set JSON annotation") |
|
parser.add_argument("--image_path_train", default="", metavar="FILE", help="The path to the training set image folder") |
|
parser.add_argument("--json_annotation_val", default="", metavar="FILE", help="The path to the validation set JSON annotation") |
|
parser.add_argument("--image_path_val", default="", metavar="FILE", help="The path to the validation set image folder") |
|
|
|
args = parser.parse_args() |
|
print("Command Line Args:", args) |
|
|
|
|
|
dataset_name = args.dataset_name |
|
register_coco_instances(f"{dataset_name}-train", {}, |
|
args.json_annotation_train, |
|
args.image_path_train) |
|
|
|
register_coco_instances(f"{dataset_name}-val", {}, |
|
args.json_annotation_val, |
|
args.image_path_val) |
|
|
|
launch( |
|
main, |
|
args.num_gpus, |
|
num_machines=args.num_machines, |
|
machine_rank=args.machine_rank, |
|
dist_url=args.dist_url, |
|
args=(args,), |
|
) |