loliipopshock
Add eval_and_save hook in trainer
9aafcc3
raw
history blame
5.58 kB
"""
The script is based on https://github.com/facebookresearch/detectron2/blob/master/tools/train_net.py.
"""
import logging
import os
import json
from collections import OrderedDict
import torch
import sys
import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.data.datasets import register_coco_instances
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch
from detectron2.evaluation import (
COCOEvaluator,
DatasetEvaluators,
SemSegEvaluator,
verify_results,
)
from detectron2.modeling import GeneralizedRCNNWithTTA
import pandas as pd
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains pre-defined default logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop. You can use
"tools/plain_train_net.py" as an example.
"""
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Returns:
DatasetEvaluator or None
It is not implemented by default.
"""
return COCOEvaluator(dataset_name, cfg, True, output_folder)
@classmethod
def test_with_TTA(cls, cfg, model):
logger = logging.getLogger("detectron2.trainer")
# In the end of training, run an evaluation with TTA
# Only support some R-CNN models.
logger.info("Running inference with test-time augmentation ...")
model = GeneralizedRCNNWithTTA(cfg, model)
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
@classmethod
def eval_and_save(cls, cfg, model):
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
pd.DataFrame(res).to_csv(os.path.join(cfg.OUTPUT_DIR, 'eval.csv'))
return res
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
with open(args.json_annotation_train, 'r') as fp:
anno_file = json.load(fp)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(anno_file["categories"])
del anno_file
cfg.DATASETS.TRAIN = (f"{args.dataset_name}-train",)
cfg.DATASETS.TEST = (f"{args.dataset_name}-val",)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
# Save the evaluation results
pd.DataFrame(res).to_csv(f'{cfg.OUTPUT_DIR}/eval.csv')
return res
"""
If you'd like to do anything fancier than the standard training logic,
consider writing your own training loop (see plain_train_net.py) or
subclassing the trainer.
"""
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.eval_and_save(cfg, trainer.model))]
)
if cfg.TEST.AUG.ENABLED:
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
)
return trainer.train()
if __name__ == "__main__":
parser = default_argument_parser()
# Extra Configurations for dataset names and paths
parser.add_argument("--dataset_name", default="", help="The Dataset Name")
parser.add_argument("--json_annotation_train", default="", metavar="FILE", help="The path to the training set JSON annotation")
parser.add_argument("--image_path_train", default="", metavar="FILE", help="The path to the training set image folder")
parser.add_argument("--json_annotation_val", default="", metavar="FILE", help="The path to the validation set JSON annotation")
parser.add_argument("--image_path_val", default="", metavar="FILE", help="The path to the validation set image folder")
args = parser.parse_args()
print("Command Line Args:", args)
# Register Datasets
dataset_name = args.dataset_name
register_coco_instances(f"{dataset_name}-train", {},
args.json_annotation_train,
args.image_path_train)
register_coco_instances(f"{dataset_name}-val", {},
args.json_annotation_val,
args.image_path_val)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)