Charles Kabui
Add 'model/layout-parser/' from commit 'b9fad076596272e427612d5e848da1ba8ea06b97'
399308e
raw
history blame
7.1 kB
"""
The script is based on https://github.com/facebookresearch/detectron2/blob/master/tools/train_net.py.
"""
import logging
import os
import json
from collections import OrderedDict
import detectron2.utils.comm as comm
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import DatasetMapper, build_detection_train_loader
from detectron2.data.datasets import register_coco_instances
from detectron2.engine import (
DefaultTrainer,
default_argument_parser,
default_setup,
hooks,
launch,
)
from detectron2.evaluation import (
COCOEvaluator,
verify_results,
)
from detectron2.modeling import GeneralizedRCNNWithTTA
import pandas as pd
def get_augs(cfg):
"""Add all the desired augmentations here. A list of availble augmentations
can be found here:
https://detectron2.readthedocs.io/en/latest/modules/data_transforms.html
"""
augs = [
T.ResizeShortestEdge(
cfg.INPUT.MIN_SIZE_TRAIN,
cfg.INPUT.MAX_SIZE_TRAIN,
cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING,
)
]
if cfg.INPUT.CROP.ENABLED:
augs.append(
T.RandomCrop_CategoryAreaConstraint(
cfg.INPUT.CROP.TYPE,
cfg.INPUT.CROP.SIZE,
cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA,
cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
)
)
horizontal_flip: bool = cfg.INPUT.RANDOM_FLIP == "horizontal"
augs.append(T.RandomFlip(horizontal=horizontal_flip, vertical=not horizontal_flip))
# Rotate the image between -90 to 0 degrees clockwise around the centre
augs.append(T.RandomRotation(angle=[-90.0, 0.0]))
return augs
class Trainer(DefaultTrainer):
"""
We use the "DefaultTrainer" which contains pre-defined default logic for
standard training workflow. They may not work for you, especially if you
are working on a new research project. In that case you can use the cleaner
"SimpleTrainer", or write your own training loop. You can use
"tools/plain_train_net.py" as an example.
Adapted from:
https://github.com/facebookresearch/detectron2/blob/master/projects/DeepLab/train_net.py
"""
@classmethod
def build_train_loader(cls, cfg):
mapper = DatasetMapper(cfg, is_train=True, augmentations=get_augs(cfg))
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
"""
Returns:
DatasetEvaluator or None
It is not implemented by default.
"""
return COCOEvaluator(dataset_name, cfg, True, output_folder)
@classmethod
def test_with_TTA(cls, cfg, model):
logger = logging.getLogger("detectron2.trainer")
# In the end of training, run an evaluation with TTA
# Only support some R-CNN models.
logger.info("Running inference with test-time augmentation ...")
model = GeneralizedRCNNWithTTA(cfg, model)
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
@classmethod
def eval_and_save(cls, cfg, model):
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
pd.DataFrame(res).to_csv(os.path.join(cfg.OUTPUT_DIR, "eval.csv"))
return res
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
with open(args.json_annotation_train, "r") as fp:
anno_file = json.load(fp)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(anno_file["categories"])
del anno_file
cfg.DATASETS.TRAIN = (f"{args.dataset_name}-train",)
cfg.DATASETS.TEST = (f"{args.dataset_name}-val",)
cfg.freeze()
default_setup(cfg, args)
return cfg
def main(args):
# Register Datasets
register_coco_instances(
f"{args.dataset_name}-train",
{},
args.json_annotation_train,
args.image_path_train,
)
register_coco_instances(
f"{args.dataset_name}-val",
{},
args.json_annotation_val,
args.image_path_val
)
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
cfg.MODEL.WEIGHTS, resume=args.resume
)
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
# Save the evaluation results
pd.DataFrame(res).to_csv(f"{cfg.OUTPUT_DIR}/eval.csv")
return res
# Ensure that the Output directory exists
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
"""
If you'd like to do anything fancier than the standard training logic,
consider writing your own training loop (see plain_train_net.py) or
subclassing the trainer.
"""
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.eval_and_save(cfg, trainer.model))]
)
if cfg.TEST.AUG.ENABLED:
trainer.register_hooks(
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))]
)
return trainer.train()
if __name__ == "__main__":
parser = default_argument_parser()
# Extra Configurations for dataset names and paths
parser.add_argument(
"--dataset_name",
help="The Dataset Name")
parser.add_argument(
"--json_annotation_train",
help="The path to the training set JSON annotation",
)
parser.add_argument(
"--image_path_train",
help="The path to the training set image folder",
)
parser.add_argument(
"--json_annotation_val",
help="The path to the validation set JSON annotation",
)
parser.add_argument(
"--image_path_val",
help="The path to the validation set image folder",
)
args = parser.parse_args()
print("Command Line Args:", args)
# Dataset Registration is moved to the main function to support multi-gpu training
# See ref https://github.com/facebookresearch/detectron2/issues/253#issuecomment-554216517
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)