Charles Kabui
Add 'model/layout-parser/' from commit 'b9fad076596272e427612d5e848da1ba8ea06b97'
399308e
raw
history blame
7.51 kB
import os, re, json
import imagesize
from glob import glob
from bs4 import BeautifulSoup
import numpy as np
from PIL import Image
import argparse
from tqdm import tqdm
import sys
sys.path.append('..')
from utils import cocosplit
class NpEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(NpEncoder, self).default(obj)
def cvt_coords_to_array(obj):
return np.array(
[(float(pt['x']), float(pt['y']))
for pt in obj.find_all("Point")]
)
def cal_ployarea(points):
x = points[:,0]
y = points[:,1]
return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))
def _create_category(schema=0):
if schema==0:
categories = \
[{"supercategory": "layout", "id": 0, "name": "Background"},
{"supercategory": "layout", "id": 1, "name": "TextRegion"},
{"supercategory": "layout", "id": 2, "name": "ImageRegion"},
{"supercategory": "layout", "id": 3, "name": "TableRegion"},
{"supercategory": "layout", "id": 4, "name": "MathsRegion"},
{"supercategory": "layout", "id": 5, "name": "SeparatorRegion"},
{"supercategory": "layout", "id": 6, "name": "OtherRegion"}]
find_categories = lambda name: \
[val["id"] for val in categories if val['name'] == name][0]
conversion = \
{
'TextRegion': find_categories("TextRegion"),
'TableRegion': find_categories("TableRegion"),
'MathsRegion': find_categories("MathsRegion"),
'ChartRegion': find_categories("ImageRegion"),
'GraphicRegion': find_categories("ImageRegion"),
'ImageRegion': find_categories("ImageRegion"),
'LineDrawingRegion':find_categories("OtherRegion"),
'SeparatorRegion': find_categories("SeparatorRegion"),
'NoiseRegion': find_categories("OtherRegion"),
'FrameRegion': find_categories("OtherRegion"),
}
return categories, conversion
_categories, _categories_conversion = _create_category(schema=0)
_info = {
"description": "PRIMA Layout Analysis Dataset",
"url": "https://www.primaresearch.org/datasets/Layout_Analysis",
"version": "1.0",
"year": 2010,
"contributor": "PRIMA Research",
"date_created": "2020/09/01",
}
def _load_soup(filename):
with open(filename, "r") as fp:
soup = BeautifulSoup(fp.read(),'xml')
return soup
def _image_template(image_id, image_path):
width, height = imagesize.get(image_path)
return {
"file_name": os.path.basename(image_path),
"height": height,
"width": width,
"id": int(image_id)
}
def _anno_template(anno_id, image_id, pts, obj_tag):
x_1, x_2 = pts[:,0].min(), pts[:,0].max()
y_1, y_2 = pts[:,1].min(), pts[:,1].max()
height = y_2 - y_1
width = x_2 - x_1
return {
"segmentation": [pts.flatten().tolist()],
"area": cal_ployarea(pts),
"iscrowd": 0,
"image_id": image_id,
"bbox": [x_1, y_1, width, height],
"category_id": _categories_conversion[obj_tag],
"id": anno_id
}
class PRIMADataset():
def __init__(self, base_path, anno_path='XML',
image_path='Images'):
self.base_path = base_path
self.anno_path = os.path.join(base_path, anno_path)
self.image_path = os.path.join(base_path, image_path)
self._ids = self.find_all_image_ids()
def __len__(self):
return len(self.ids)
def __getitem__(self, idx):
return self.load_image_and_annotaiton(idx)
def find_all_annotation_files(self):
return glob(os.path.join(self.anno_path, '*.xml'))
def find_all_image_ids(self):
replacer = lambda s: os.path.basename(s).replace('pc-', '').replace('.xml', '')
return [replacer(s) for s in self.find_all_annotation_files()]
def load_image_and_annotaiton(self, idx):
image_id = self._ids[idx]
image_path = os.path.join(self.image_path, f'{image_id}.tif')
image = Image.open(image_path)
anno = self.load_annotation(idx)
return image, anno
def load_annotation(self, idx):
image_id = self._ids[idx]
anno_path = os.path.join(self.anno_path, f'pc-{image_id}.xml')
# A dirtly hack to load the files w/wo pc- simualtaneously
if not os.path.exists(anno_path):
anno_path = os.path.join(self.anno_path, f'{image_id}.xml')
assert os.path.exists(anno_path), "Invalid path"
anno = _load_soup(anno_path)
return anno
def convert_to_COCO(self, save_path):
all_image_infos = []
all_anno_infos = []
anno_id = 0
for idx, image_id in enumerate(tqdm(self._ids)):
# We use the idx as the image id
image_path = os.path.join(self.image_path, f'{image_id}.tif')
image_info = _image_template(idx, image_path)
all_image_infos.append(image_info)
anno = self.load_annotation(idx)
for item in anno.find_all(re.compile(".*Region")):
pts = cvt_coords_to_array(item.Coords)
if 0 not in pts.shape:
# Sometimes there will be polygons with less
# than 4 edges, and they could not be appropriately
# handled by the COCO format. So we just drop them.
if pts.shape[0] >= 4:
anno_info = _anno_template(anno_id, idx, pts, item.name)
all_anno_infos.append(anno_info)
anno_id += 1
final_annotation = {
"info": _info,
"licenses": [],
"images": all_image_infos,
"annotations": all_anno_infos,
"categories": _categories}
with open(save_path, 'w') as fp:
json.dump(final_annotation, fp, cls=NpEncoder)
return final_annotation
parser = argparse.ArgumentParser()
parser.add_argument('--prima_datapath', type=str, default='./data/prima', help='the path to the prima data folders')
parser.add_argument('--anno_savepath', type=str, default='./annotations.json', help='the path to save the new annotations')
if __name__ == "__main__":
args = parser.parse_args()
print("Start running the conversion script")
print(f"Loading the information from the path {args.prima_datapath}")
dataset = PRIMADataset(args.prima_datapath)
print(f"Saving the annotation to {args.anno_savepath}")
res = dataset.convert_to_COCO(args.anno_savepath)
cocosplit.main(
args.anno_savepath,
split_ratio=0.8,
having_annotations=True,
train_save_path=args.anno_savepath.replace('.json', '-train.json'),
test_save_path=args.anno_savepath.replace('.json', '-val.json'),
random_state=24)