|
from PIL import Image |
|
import requests |
|
import torch |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
import gradio as gr |
|
|
|
from models.blip import blip_decoder |
|
|
|
image_size = 384 |
|
transform = transforms.Compose([ |
|
transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|
]) |
|
|
|
model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth' |
|
|
|
model = blip_decoder(pretrained=model_url, image_size=384, vit='large') |
|
model.eval() |
|
model = model.to(device) |
|
|
|
|
|
from models.blip_vqa import blip_vqa |
|
|
|
image_size_vq = 480 |
|
transform_vq = transforms.Compose([ |
|
transforms.Resize((image_size_vq,image_size_vq),interpolation=InterpolationMode.BICUBIC), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) |
|
]) |
|
|
|
model_url_vq = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth' |
|
|
|
model_vq = blip_vqa(pretrained=model_url_vq, image_size=480, vit='base') |
|
model_vq.eval() |
|
model_vq = model_vq.to(device) |
|
|
|
|
|
|
|
def inference(raw_image, model_n, question, strategy): |
|
if model_n == 'Image Captioning': |
|
image = transform(raw_image).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
if strategy == "Beam search": |
|
caption = model.generate(image, sample=False, num_beams=3, max_length=20, min_length=5) |
|
else: |
|
caption = model.generate(image, sample=True, top_p=0.9, max_length=20, min_length=5) |
|
return 'caption: '+caption[0] |
|
|
|
else: |
|
image_vq = transform_vq(raw_image).unsqueeze(0).to(device) |
|
with torch.no_grad(): |
|
answer = model_vq(image_vq, question, train=False, inference='generate') |
|
return 'answer: '+answer[0] |
|
|
|
inputs = [gr.Image(type='pil'), |
|
gr.Radio(choices=['Image Captioning',"Visual Question Answering"], type="value", value="Image Captioning", label="Task"), |
|
gr.Textbox(lines=2, label="Question"), |
|
gr.Radio(choices=['Beam search','Nucleus sampling'], type="value", value="Nucleus sampling", label="Caption Decoding Strategy")] |
|
outputs = gr.Textbox(label="Output") |
|
|
|
title = "BLIP" |
|
|
|
description = "Gradio demo for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation (Salesforce Research). To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." |
|
|
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2201.12086' target='_blank'>BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation</a> | <a href='https://github.com/salesforce/BLIP' target='_blank'>Github Repo</a></p>" |
|
|
|
|
|
demo = gr.Interface(inference, |
|
inputs, |
|
outputs, |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[['starrynight.jpeg',"Image Captioning","None","Nucleus sampling"]], |
|
allow_flagging='never', |
|
cache_examples="lazy", |
|
delete_cache=(4000, 4000)) |
|
demo.queue(default_concurrency_limit=1).launch(show_error=True, show_api=True, mcp_server=True) |
|
|