CANVAS-DEMO / canvas.py
lastdefiance20's picture
Fix huggingface model loading problem
54ae859
from pydantic import BaseModel
import numpy as np
import torch
from PIL import Image
from transformers import Idefics2ForConditionalGeneration, Idefics2Processor, PreTrainedModel, ProcessorMixin
from typing import Optional
import re
import logging
import pickle
from pathlib import Path
import numpy as np
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
from huggingface_hub import hf_hub_download
class BaseModelYamlJsonMixin:
"""
BaseModel with helper methods for loading and saving to yaml/json format.
"""
@classmethod
def from_yaml(cls, path: Path):
with open(path, "r", encoding="utf-8") as f:
return cls(**yaml.safe_load(f))
def to_yaml(self: BaseModel, path: Path):
with open(path, "w", encoding="utf-8") as f:
yaml.safe_dump(self.model_dump(), f)
@classmethod
def from_json(cls, path: Path):
with open(path, "r", encoding="utf-8") as f:
return cls.model_validate_json(f.read())
def to_json(self: BaseModel, path: Path, indent: int = 4, *args, **kwargs):
with open(path, "w", encoding="utf-8") as f:
f.write(self.model_dump_json(indent=indent, *args, **kwargs))
class BaseModelWithYamlJsonFromTo(BaseModel, BaseModelYamlJsonMixin):
pass
class Idefics2TrainAdditionalConfig(BaseModel):
"""
num_action_tokens (`int`, defaults to `32`):
Number of action tokens to add to the tokenizer vocabulary.
do_image_splitting (`bool`, *optional*, defaults to `False`):
Whether to split the image into a sequence 4 equal sub-images concatenated with the original image. That
strategy was first introduced in https://arxiv.org/abs/2311.06607.
lora_config (`dict`, defaults to recommended config from https://x.com/danielhanchen/status/1791900967472140583):
Configuration for the LoRA model. If it is `None`, the model will not use LoRA.
"""
# must be set to extend vocabulary of model + tokenizer
num_action_tokens: int = -1 # it will be overwritten by the processor_config.yml
# must be set to be used in pipeline
num_actions: int = -1 # it will be overwritten by the processor_config.yml
do_image_splitting: bool = True
freeze_original_vocab: bool = False
freeze_vision_model: bool = False
freeze_connector: bool = False
torch_dtype: str = "bfloat16"
lora_config: dict | None = dict(
r=256,
lora_alpha=512,
lora_dropout=0.1,
target_modules="all-linear",
use_rslora=True,
init_lora_weights="gaussian",
modules_to_save=["lm_head", "embed_tokens"],
)
model_name_or_path: str = "HuggingFaceM4/idefics2-8b"
class KMeansActionTokenizer():
def __init__(self, action_count: int = 128):
self.action_count = action_count
self.kmeans = KMeans(n_clusters=self.action_count, random_state=np.random.RandomState(seed=42))
@property
def token_count(self):
return self.action_count
@classmethod
def from_pretrained(cls, model_path: str | Path):
model_path = Path(model_path)
self = cls()
action_tokenizer_path = hf_hub_download(repo_id=str(model_path), filename="tokenizer.pkl")
with open(action_tokenizer_path, "rb") as file:
self.kmeans = pickle.load(file)
self.action_count = self.kmeans.n_clusters
# assert self.action_count == 32
return self
def save_pretrained(self, model_path: str | Path):
model_path = Path(model_path)
model_path.mkdir(exist_ok=True)
with open(model_path / "tokenizer.pkl", "wb") as file:
pickle.dump(self.kmeans, file)
def train(self, actions):
self.kmeans.fit(actions)
def tokenize(self, action, padding=False, max_length=-1, truncation=False):
# action: (K, 3) shape, adjusted delta_position and delta_yaw
return [i for i in self.kmeans.predict(action)]
def detokenize(self, tokens):
# Token Check
check = np.asarray(tokens)
in_valid_range = (0 <= check) & (check < self.action_count)
if not in_valid_range.all():
logging.warning(f"Invalid tokens occur: {tokens}")
# If error occurs, return stop action.
return np.asarray([[0.0, 0.0, 0.0] for _ in range(len(tokens))])
return np.asarray([self.kmeans.cluster_centers_[t] for t in tokens])
def visualize(self, figset=None):
if figset is None:
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(12, 16), dpi=300)
else:
fig, axes = figset
FONT = {"fontsize": 20}
axes[0].set_title("Center", fontdict=FONT)
axes[1].set_title("Center_Rot", fontdict=FONT)
labels = self.kmeans.labels_
centers = self.kmeans.cluster_centers_
# plot center. each center is given as (x, y, yaw). plot point (x,y) and arrow from (x,y) to p', with direction of yaw. consider (x, y)'s scale
scale_factor = 0.05
for i, center in enumerate(centers):
x, y, yaw = center
axes[0].plot(x, y, "ro")
axes[0].arrow(
x,
y,
np.cos(yaw) * scale_factor,
np.sin(yaw) * scale_factor,
head_width=scale_factor * 0.3,
head_length=scale_factor * 0.3,
fc="k",
ec="k",
)
axes[0].text(x, y, f"{i}", fontsize=10)
axes[0].axis("equal")
axes[0].grid(True)
# filter centers that are not far from origin in distance 0.3
_centers = centers[np.linalg.norm(centers[:, :2], axis=1) < 0.05]
# print(f"action near zero: {_centers}")
scale_factor = 0.1
for center in _centers:
x, y, yaw = center
axes[1].plot(x, y, "ro")
axes[1].arrow(
x,
y,
np.cos(yaw) * scale_factor,
np.sin(yaw) * scale_factor,
head_width=scale_factor * 0.3,
head_length=scale_factor * 0.3,
fc="k",
ec="k",
)
axes[1].axis("equal")
axes[1].grid(True)
return fig, axes
class Idefics2PipelineConfig(BaseModelWithYamlJsonFromTo):
pipeline_class: str = "Idefics2Pipeline"
train_additional_cfg: Idefics2TrainAdditionalConfig
class Idefics2Pipeline():
def __init__(
self,
model: PreTrainedModel,
processor: ProcessorMixin,
action_tokenizer: KMeansActionTokenizer,
config: Idefics2PipelineConfig,
):
self.model = model
self.processor = processor
self.action_tokenizer = action_tokenizer
self.config = config
def save_pretrained(
self,
save_directory: str,
):
if not isinstance(save_directory, Path):
save_directory = Path(save_directory)
self.model.save_pretrained(save_directory)
self.processor.save_pretrained(save_directory)
self.action_tokenizer.save_pretrained(save_directory)
self.config.to_json(f"{save_directory}/pipeline_config.json")
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str):
pipeline_config_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="pipeline_config.json")
pipeline_config_path = Path(pipeline_config_path)
config = Idefics2PipelineConfig.model_validate_json(
(pipeline_config_path).read_text()
)
if not isinstance(pretrained_model_name_or_path, Path):
pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
model = Idefics2ForConditionalGeneration.from_pretrained(pretrained_model_name_or_path)
processor = Idefics2Processor.from_pretrained(pretrained_model_name_or_path)
model.eval()
action_tokenizer = KMeansActionTokenizer.from_pretrained(pretrained_model_name_or_path)
return cls(model, processor, action_tokenizer, config)
def to(self, device):
return self.model.to(device)
@torch.no_grad()
def __call__(
self,
examples: list[dict],
return_traj: Optional[bool] = False,
):
"""
call model with examples
Args:
examples: list of example, [B, example]
return_traj: return trajectory if True
"""
raise NotImplementedError("Not implemented yet")
# same as idefics2 data collator
texts = []
images = []
for example in examples:
image = example["images"]
messages = example["messages"]
text = self.processor.apply_chat_template(messages, add_generation_prompt=False)
texts.append(text.strip())
images.append(image)
inputs = self.processor(text=texts, images=images, return_tensors="pt", padding=True)
generate_ids = self.model.generate(**inputs, max_new_tokens=self.config.num_actions)
generated_text = self.processor.batch_decode(generate_ids, skip_special_tokens=True)
if return_traj:
return self.action_tokenizer.detokenize(generated_text)
else:
return generated_text
@torch.no_grad()
def __call__(
self,
message_list: list[list[dict]],
images_list: list[list[Image.Image]],
return_traj: Optional[bool] = False,
):
"""
call model with message and images
Args:
message_list: list of messages, [B, messages]
images_list: list of images, [B, images]
return_traj: return trajectory if True
"""
# we don't use batch inference for run model worker
if len(message_list) != 1:
raise ValueError("No batch api call allowed for Idefics2Pipeline")
message = message_list[0]
images = images_list[0]
prompt = self.processor.apply_chat_template(message, add_generation_prompt=True)
prompt.replace("<end_of_utterance>", "")
# add space to match the training data
prompt = prompt + " "
inputs = self.processor(text=prompt, images=images, return_tensors="pt", padding=True)
device = self.model.device
inputs = {k: v.to(device) for k, v in inputs.items()}
generate_ids = self.model.generate(
**inputs, max_new_tokens=self.config.train_additional_cfg.num_actions, top_k=1
)
generated_texts = self.processor.batch_decode(generate_ids, skip_special_tokens=True)
if return_traj:
pred_action = re.findall(r"<ACTION_(\d+)>", generated_texts[0])
# pred_action = pred_action if len(pred_action) == self.config.num_actions else [-1] * self.config.num_actions
pred_action = np.array(pred_action, dtype=np.int64)
return self.action_tokenizer.detokenize(pred_action).tolist()
else:
return generated_texts