mattritchey's picture
Update app.py
2a9750b verified
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 8 03:39:02 2023
@author: mritchey
"""
# streamlit run "hail all.py"
import pandas as pd
import numpy as np
import streamlit as st
from geopy.extra.rate_limiter import RateLimiter
from geopy.geocoders import Nominatim
import folium
from streamlit_folium import st_folium
from vincenty import vincenty
import duckdb
import os
import requests
import urllib
geocode_key=os.environ["geocode_key"]
st.set_page_config(layout="wide")
@st.cache_data
def convert_df(df):
return df.to_csv(index=0).encode('utf-8')
def duck_sql(sql_code):
con = duckdb.connect()
con.execute("PRAGMA threads=2")
con.execute("PRAGMA enable_object_cache")
return con.execute(sql_code).df()
def get_data(lat, lon, date_str):
code = f"""
select "#ZTIME" as "Date_utc", LON, LAT, MAXSIZE
from
'data/*.parquet'
where LAT<={lat}+1 and LAT>={lat}-1
and LON<={lon}+1 and LON>={lon}-1
and "#ZTIME"<={date_str}
"""
return duck_sql(code)
def map_location(address, lat, lon):
m = folium.Map(location=[lat, lon],
zoom_start=9,
height=400)
folium.Marker(
location=[lat, lon],
tooltip=f'Address: {address}',
).add_to(m)
return m
def distance(x):
left_coords = (x[0], x[1])
right_coords = (x[2], x[3])
return vincenty(left_coords, right_coords, miles=True)
def geocode(address):
try:
try:
address2 = address.replace(' ', '+').replace(',', '%2C')
df = pd.read_json(
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
results = df.iloc[:1, 0][0][0]['coordinates']
lat, lon = results['y'], results['x']
except:
geolocator = Nominatim(user_agent="GTA Lookup")
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
location = geolocator.geocode(address)
lat, lon = location.latitude, location.longitude
except:
try:
address = urllib.parse.quote(address)
url = 'https://api.geocod.io/v1.7/geocode?q=+'+address+f'&api_key={geocode_key}'
json_reponse=requests.get(url,verify=False).json()
lat,lon = json_reponse['results'][0]['location'].values()
except:
st.header("Sorry...Did not Find Address. Try to Correct with Google or just use City, State & Zip.")
st.header("")
st.header("")
return lat, lon
#Side Bar
address = st.sidebar.text_input("Address", "Dallas, TX")
date = st.sidebar.date_input("Loss Date (Max)", pd.Timestamp(2024, 12, 11), key='date') # change here
show_data = st.sidebar.selectbox('Show Data At Least Within:', ('Show All', '1 Mile', '3 Miles', '5 Miles'))
#Geocode Addreses
date_str=date.strftime("%Y%m%d")
lat, lon = geocode(address)
#Filter Data
df_hail_cut = get_data(lat,lon, date_str)
df_hail_cut["Lat_address"] = lat
df_hail_cut["Lon_address"] = lon
df_hail_cut['Miles to Hail'] = [
distance(i) for i in df_hail_cut[['LAT', 'LON', 'Lat_address', 'Lon_address']].values]
df_hail_cut['MAXSIZE'] = df_hail_cut['MAXSIZE'].round(2)
df_hail_cut = df_hail_cut.query("`Miles to Hail`<10")
df_hail_cut['Category'] = np.where(df_hail_cut['Miles to Hail'] < 1, "Within 1 Mile",
np.where(df_hail_cut['Miles to Hail'] < 3, "Within 3 Miles",
np.where( df_hail_cut['Miles to Hail'] < 5, "Within 5 Miles",
np.where(df_hail_cut['Miles to Hail'] < 10, "Within 10 Miles", 'Other'))))
df_hail_cut_group = pd.pivot_table(df_hail_cut, index='Date_utc',
columns='Category',
values='MAXSIZE',
aggfunc='max')
cols = df_hail_cut_group.columns
cols_focus = [ "Within 1 Mile","Within 3 Miles",
"Within 5 Miles", "Within 10 Miles"]
missing_cols = set(cols_focus)-set(cols)
for c in missing_cols:
df_hail_cut_group[c] = np.nan
#Filter
df_hail_cut_group2 = df_hail_cut_group[cols_focus]
if show_data=='Show All':
pass
else:
df_hail_cut_group2 = df_hail_cut_group2.query(
f"`Within {show_data}`==`Within {show_data}`")
for i in range(len(cols_focus)-1):
df_hail_cut_group2[cols_focus[i+1]] = np.where(df_hail_cut_group2[cols_focus[i+1]].fillna(0) <
df_hail_cut_group2[cols_focus[i]].fillna(0),
df_hail_cut_group2[cols_focus[i]],
df_hail_cut_group2[cols_focus[i+1]])
df_hail_cut_group2 = df_hail_cut_group2.sort_index(ascending=False)
df_hail_cut_group2.index=pd.to_datetime(df_hail_cut_group2.index,format='%Y%m%d')
df_hail_cut_group2.index=df_hail_cut_group2.index.strftime("%Y-%m-%d")
#Map Data
m = map_location(address, lat, lon)
#Display
col1, col2 = st.columns((3, 2))
with col1:
st.header('Estimated Maximum Hail Size')
st.write('Data from 2010 to 2024-12-11') # change here
df_hail_cut_group2
data=df_hail_cut_group2.reset_index()
data['Address']=''
data.loc[0,'Address']=address
csv2 = convert_df(data)
st.download_button(
label="Download data as CSV",
data=csv2,
file_name=f'{address}_{date_str}.csv',
mime='text/csv')
with col2:
st.header('Map')
st_folium(m, height=400)