RemFx / models.py
mattricesound's picture
Refactor to use hydra
a89496d
raw
history blame
5.49 kB
import torch
from torch import Tensor, nn
import pytorch_lightning as pl
from einops import rearrange
import wandb
from audio_diffusion_pytorch import AudioDiffusionModel
import auraloss
import sys
sys.path.append("./umx")
from umx.openunmix.model import OpenUnmix, Separator
SAMPLE_RATE = 22050 # From audio-diffusion-pytorch
class RemFXModel(pl.LightningModule):
def __init__(
self,
lr: float,
lr_beta1: float,
lr_beta2: float,
lr_eps: float,
lr_weight_decay: float,
network: nn.Module,
):
super().__init__()
self.lr = lr
self.lr_beta1 = lr_beta1
self.lr_beta2 = lr_beta2
self.lr_eps = lr_eps
self.lr_weight_decay = lr_weight_decay
self.model = network
@property
def device(self):
return next(self.model.parameters()).device
def configure_optimizers(self):
optimizer = torch.optim.AdamW(
list(self.model.parameters()),
lr=self.lr,
betas=(self.lr_beta1, self.lr_beta2),
eps=self.lr_eps,
weight_decay=self.lr_weight_decay,
)
return optimizer
def training_step(self, batch, batch_idx):
loss = self.common_step(batch, batch_idx, mode="train")
return loss
def validation_step(self, batch, batch_idx):
loss = self.common_step(batch, batch_idx, mode="valid")
def common_step(self, batch, batch_idx, mode: str = "train"):
loss = self.model(batch)
self.log(f"{mode}_loss", loss)
return loss
def on_validation_epoch_start(self):
self.log_next = True
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
if self.log_next:
x, target, label = batch
y = self.model.sample(x)
log_wandb_audio_batch(
logger=self.logger,
id="sample",
samples=x.cpu(),
sampling_rate=SAMPLE_RATE,
caption=f"Epoch {self.current_epoch}",
)
log_wandb_audio_batch(
logger=self.logger,
id="prediction",
samples=y.cpu(),
sampling_rate=SAMPLE_RATE,
caption=f"Epoch {self.current_epoch}",
)
log_wandb_audio_batch(
logger=self.logger,
id="target",
samples=target.cpu(),
sampling_rate=SAMPLE_RATE,
caption=f"Epoch {self.current_epoch}",
)
self.log_next = False
class OpenUnmixModel(torch.nn.Module):
def __init__(
self,
n_fft: int = 2048,
hop_length: int = 512,
n_channels: int = 1,
alpha: float = 0.3,
sample_rate: int = 22050,
):
super().__init__()
self.n_channels = n_channels
self.n_fft = n_fft
self.hop_length = hop_length
self.alpha = alpha
window = torch.hann_window(n_fft)
self.register_buffer("window", window)
self.num_bins = self.n_fft // 2 + 1
self.sample_rate = sample_rate
self.model = OpenUnmix(
nb_channels=self.n_channels,
nb_bins=self.num_bins,
)
self.separator = Separator(
target_models={"other": self.model},
nb_channels=self.n_channels,
sample_rate=self.sample_rate,
n_fft=self.n_fft,
n_hop=self.hop_length,
)
self.loss_fn = auraloss.freq.MultiResolutionSTFTLoss(
n_bins=self.num_bins, sample_rate=self.sample_rate
)
def forward(self, batch):
x, target, label = batch
X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha)
Y = self.model(X)
sep_out = self.separator(x).squeeze(1)
loss = self.loss_fn(sep_out, target)
return loss
def sample(self, x: Tensor) -> Tensor:
return self.separator(x).squeeze(1)
class DiffusionGenerationModel(nn.Module):
def __init__(self, n_channels: int = 1):
super().__init__()
self.model = AudioDiffusionModel(in_channels=n_channels)
def forward(self, batch):
x, target, label = batch
return self.model(x)
def sample(self, x: Tensor, num_steps: int = 10) -> Tensor:
noise = torch.randn(x.shape)
return self.model.sample(noise, num_steps=num_steps)
def log_wandb_audio_batch(
logger: pl.loggers.WandbLogger,
id: str,
samples: Tensor,
sampling_rate: int,
caption: str = "",
):
num_items = samples.shape[0]
samples = rearrange(samples, "b c t -> b t c")
for idx in range(num_items):
logger.experiment.log(
{
f"{id}_{idx}": wandb.Audio(
samples[idx].cpu().numpy(),
caption=caption,
sample_rate=sampling_rate,
)
}
)
def spectrogram(
x: torch.Tensor,
window: torch.Tensor,
n_fft: int,
hop_length: int,
alpha: float,
) -> torch.Tensor:
bs, chs, samp = x.size()
x = x.view(bs * chs, -1) # move channels onto batch dim
X = torch.stft(
x,
n_fft=n_fft,
hop_length=hop_length,
window=window,
return_complex=True,
)
# move channels back
X = X.view(bs, chs, X.shape[-2], X.shape[-1])
return torch.pow(X.abs() + 1e-8, alpha)