Spaces:
Runtime error
Runtime error
import torch | |
from torch import Tensor, nn | |
import pytorch_lightning as pl | |
from einops import rearrange | |
import wandb | |
from audio_diffusion_pytorch import AudioDiffusionModel | |
import auraloss | |
import sys | |
sys.path.append("./umx") | |
from umx.openunmix.model import OpenUnmix, Separator | |
SAMPLE_RATE = 22050 # From audio-diffusion-pytorch | |
class RemFXModel(pl.LightningModule): | |
def __init__( | |
self, | |
lr: float, | |
lr_beta1: float, | |
lr_beta2: float, | |
lr_eps: float, | |
lr_weight_decay: float, | |
network: nn.Module, | |
): | |
super().__init__() | |
self.lr = lr | |
self.lr_beta1 = lr_beta1 | |
self.lr_beta2 = lr_beta2 | |
self.lr_eps = lr_eps | |
self.lr_weight_decay = lr_weight_decay | |
self.model = network | |
def device(self): | |
return next(self.model.parameters()).device | |
def configure_optimizers(self): | |
optimizer = torch.optim.AdamW( | |
list(self.model.parameters()), | |
lr=self.lr, | |
betas=(self.lr_beta1, self.lr_beta2), | |
eps=self.lr_eps, | |
weight_decay=self.lr_weight_decay, | |
) | |
return optimizer | |
def training_step(self, batch, batch_idx): | |
loss = self.common_step(batch, batch_idx, mode="train") | |
return loss | |
def validation_step(self, batch, batch_idx): | |
loss = self.common_step(batch, batch_idx, mode="valid") | |
def common_step(self, batch, batch_idx, mode: str = "train"): | |
loss = self.model(batch) | |
self.log(f"{mode}_loss", loss) | |
return loss | |
def on_validation_epoch_start(self): | |
self.log_next = True | |
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx): | |
if self.log_next: | |
x, target, label = batch | |
y = self.model.sample(x) | |
log_wandb_audio_batch( | |
logger=self.logger, | |
id="sample", | |
samples=x.cpu(), | |
sampling_rate=SAMPLE_RATE, | |
caption=f"Epoch {self.current_epoch}", | |
) | |
log_wandb_audio_batch( | |
logger=self.logger, | |
id="prediction", | |
samples=y.cpu(), | |
sampling_rate=SAMPLE_RATE, | |
caption=f"Epoch {self.current_epoch}", | |
) | |
log_wandb_audio_batch( | |
logger=self.logger, | |
id="target", | |
samples=target.cpu(), | |
sampling_rate=SAMPLE_RATE, | |
caption=f"Epoch {self.current_epoch}", | |
) | |
self.log_next = False | |
class OpenUnmixModel(torch.nn.Module): | |
def __init__( | |
self, | |
n_fft: int = 2048, | |
hop_length: int = 512, | |
n_channels: int = 1, | |
alpha: float = 0.3, | |
sample_rate: int = 22050, | |
): | |
super().__init__() | |
self.n_channels = n_channels | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.alpha = alpha | |
window = torch.hann_window(n_fft) | |
self.register_buffer("window", window) | |
self.num_bins = self.n_fft // 2 + 1 | |
self.sample_rate = sample_rate | |
self.model = OpenUnmix( | |
nb_channels=self.n_channels, | |
nb_bins=self.num_bins, | |
) | |
self.separator = Separator( | |
target_models={"other": self.model}, | |
nb_channels=self.n_channels, | |
sample_rate=self.sample_rate, | |
n_fft=self.n_fft, | |
n_hop=self.hop_length, | |
) | |
self.loss_fn = auraloss.freq.MultiResolutionSTFTLoss( | |
n_bins=self.num_bins, sample_rate=self.sample_rate | |
) | |
def forward(self, batch): | |
x, target, label = batch | |
X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha) | |
Y = self.model(X) | |
sep_out = self.separator(x).squeeze(1) | |
loss = self.loss_fn(sep_out, target) | |
return loss | |
def sample(self, x: Tensor) -> Tensor: | |
return self.separator(x).squeeze(1) | |
class DiffusionGenerationModel(nn.Module): | |
def __init__(self, n_channels: int = 1): | |
super().__init__() | |
self.model = AudioDiffusionModel(in_channels=n_channels) | |
def forward(self, batch): | |
x, target, label = batch | |
return self.model(x) | |
def sample(self, x: Tensor, num_steps: int = 10) -> Tensor: | |
noise = torch.randn(x.shape) | |
return self.model.sample(noise, num_steps=num_steps) | |
def log_wandb_audio_batch( | |
logger: pl.loggers.WandbLogger, | |
id: str, | |
samples: Tensor, | |
sampling_rate: int, | |
caption: str = "", | |
): | |
num_items = samples.shape[0] | |
samples = rearrange(samples, "b c t -> b t c") | |
for idx in range(num_items): | |
logger.experiment.log( | |
{ | |
f"{id}_{idx}": wandb.Audio( | |
samples[idx].cpu().numpy(), | |
caption=caption, | |
sample_rate=sampling_rate, | |
) | |
} | |
) | |
def spectrogram( | |
x: torch.Tensor, | |
window: torch.Tensor, | |
n_fft: int, | |
hop_length: int, | |
alpha: float, | |
) -> torch.Tensor: | |
bs, chs, samp = x.size() | |
x = x.view(bs * chs, -1) # move channels onto batch dim | |
X = torch.stft( | |
x, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
window=window, | |
return_complex=True, | |
) | |
# move channels back | |
X = X.view(bs, chs, X.shape[-2], X.shape[-1]) | |
return torch.pow(X.abs() + 1e-8, alpha) | |