Spaces:
Runtime error
Runtime error
Commit
·
a89496d
1
Parent(s):
abb9ffa
Refactor to use hydra
Browse files- .gitignore +3 -1
- config.yaml +50 -0
- datasets.py +55 -7
- exp/audio_diffusion.yaml +15 -0
- exp/demucs.yaml +1 -0
- exp/umx.yaml +18 -0
- main.py +0 -19
- models.py +84 -81
- Experiments.ipynb → notebooks/Experiments.ipynb +0 -0
- diffusion_test.ipynb → notebooks/diffusion_test.ipynb +0 -0
- egfx.ipynb → notebooks/egfx.ipynb +0 -0
- guitar_generation_test.ipynb → notebooks/guitar_generation_test.ipynb +0 -0
- setup.py +2 -0
- shell_vars.sh +3 -0
- train.py +36 -21
- utils.py +71 -0
.gitignore
CHANGED
@@ -6,4 +6,6 @@ data/
|
|
6 |
.DS_Store
|
7 |
__pycache__/
|
8 |
lightning_logs/
|
9 |
-
RemFX/
|
|
|
|
|
|
6 |
.DS_Store
|
7 |
__pycache__/
|
8 |
lightning_logs/
|
9 |
+
RemFX/
|
10 |
+
outputs/
|
11 |
+
logs/
|
config.yaml
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- _self_
|
3 |
+
- exp: null
|
4 |
+
seed: 12345
|
5 |
+
train: True
|
6 |
+
length: 262144
|
7 |
+
sample_rate: 22050
|
8 |
+
logs_dir: "./logs"
|
9 |
+
log_every_n_steps: 1000
|
10 |
+
|
11 |
+
callbacks:
|
12 |
+
model_checkpoint:
|
13 |
+
_target_: pytorch_lightning.callbacks.ModelCheckpoint
|
14 |
+
monitor: "valid_loss" # name of the logged metric which determines when model is improving
|
15 |
+
save_top_k: 1 # save k best models (determined by above metric)
|
16 |
+
save_last: True # additionaly always save model from last epoch
|
17 |
+
mode: "min" # can be "max" or "min"
|
18 |
+
verbose: False
|
19 |
+
dirpath: ${logs_dir}/ckpts/${now:%Y-%m-%d-%H-%M-%S}
|
20 |
+
filename: '{epoch:02d}-{valid_loss:.3f}'
|
21 |
+
|
22 |
+
datamodule:
|
23 |
+
_target_: datasets.Datamodule
|
24 |
+
dataset:
|
25 |
+
_target_: datasets.GuitarFXDataset
|
26 |
+
sample_rate: ${sample_rate}
|
27 |
+
root: ${oc.env:DATASET_ROOT}
|
28 |
+
length: ${length}
|
29 |
+
val_split: 0.2
|
30 |
+
batch_size: 16
|
31 |
+
num_workers: 8
|
32 |
+
pin_memory: True
|
33 |
+
|
34 |
+
logger:
|
35 |
+
_target_: pytorch_lightning.loggers.WandbLogger
|
36 |
+
project: ${oc.env:WANDB_PROJECT}
|
37 |
+
entity: ${oc.env:WANDB_ENTITY}
|
38 |
+
# offline: False # set True to store all logs only locally
|
39 |
+
job_type: "train"
|
40 |
+
group: ""
|
41 |
+
save_dir: "."
|
42 |
+
|
43 |
+
trainer:
|
44 |
+
_target_: pytorch_lightning.Trainer
|
45 |
+
precision: 32 # Precision used for tensors, default `32`
|
46 |
+
min_epochs: 0
|
47 |
+
max_epochs: -1
|
48 |
+
enable_model_summary: False
|
49 |
+
log_every_n_steps: 1 # Logs metrics every N batches
|
50 |
+
accumulate_grad_batches: 1
|
datasets.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
import
|
2 |
-
from torch.utils.data import Dataset
|
3 |
import torchaudio
|
4 |
import torchaudio.transforms as T
|
5 |
import torch.nn.functional as F
|
6 |
from pathlib import Path
|
7 |
-
|
|
|
8 |
|
9 |
# https://zenodo.org/record/7044411/
|
10 |
|
@@ -18,18 +18,19 @@ class GuitarFXDataset(Dataset):
|
|
18 |
root: str,
|
19 |
sample_rate: int,
|
20 |
length: int = LENGTH,
|
21 |
-
|
22 |
):
|
23 |
self.length = length
|
24 |
self.wet_files = []
|
25 |
self.dry_files = []
|
26 |
self.labels = []
|
27 |
self.root = Path(root)
|
28 |
-
|
29 |
-
|
|
|
30 |
d.name for d in self.root.iterdir() if d.is_dir() and d != "Clean"
|
31 |
]
|
32 |
-
for i, effect in enumerate(
|
33 |
for pickup in Path(self.root / effect).iterdir():
|
34 |
self.wet_files += sorted(list(pickup.glob("*.wav")))
|
35 |
self.dry_files += sorted(
|
@@ -61,3 +62,50 @@ class GuitarFXDataset(Dataset):
|
|
61 |
elif resampled_y.shape[-1] > self.length:
|
62 |
resampled_y = resampled_y[:, : self.length]
|
63 |
return (resampled_x, resampled_y, effect_label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset, DataLoader, random_split
|
|
|
2 |
import torchaudio
|
3 |
import torchaudio.transforms as T
|
4 |
import torch.nn.functional as F
|
5 |
from pathlib import Path
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
from typing import Any, List
|
8 |
|
9 |
# https://zenodo.org/record/7044411/
|
10 |
|
|
|
18 |
root: str,
|
19 |
sample_rate: int,
|
20 |
length: int = LENGTH,
|
21 |
+
effect_types: List[str] = None,
|
22 |
):
|
23 |
self.length = length
|
24 |
self.wet_files = []
|
25 |
self.dry_files = []
|
26 |
self.labels = []
|
27 |
self.root = Path(root)
|
28 |
+
|
29 |
+
if effect_types is None:
|
30 |
+
effect_types = [
|
31 |
d.name for d in self.root.iterdir() if d.is_dir() and d != "Clean"
|
32 |
]
|
33 |
+
for i, effect in enumerate(effect_types):
|
34 |
for pickup in Path(self.root / effect).iterdir():
|
35 |
self.wet_files += sorted(list(pickup.glob("*.wav")))
|
36 |
self.dry_files += sorted(
|
|
|
62 |
elif resampled_y.shape[-1] > self.length:
|
63 |
resampled_y = resampled_y[:, : self.length]
|
64 |
return (resampled_x, resampled_y, effect_label)
|
65 |
+
|
66 |
+
|
67 |
+
class Datamodule(pl.LightningDataModule):
|
68 |
+
def __init__(
|
69 |
+
self,
|
70 |
+
dataset,
|
71 |
+
*,
|
72 |
+
val_split: float,
|
73 |
+
batch_size: int,
|
74 |
+
num_workers: int,
|
75 |
+
pin_memory: bool = False,
|
76 |
+
**kwargs: int,
|
77 |
+
) -> None:
|
78 |
+
super().__init__()
|
79 |
+
self.dataset = dataset
|
80 |
+
self.val_split = val_split
|
81 |
+
self.batch_size = batch_size
|
82 |
+
self.num_workers = num_workers
|
83 |
+
self.pin_memory = pin_memory
|
84 |
+
self.data_train: Any = None
|
85 |
+
self.data_val: Any = None
|
86 |
+
|
87 |
+
def setup(self, stage: Any = None) -> None:
|
88 |
+
split = [1.0 - self.val_split, self.val_split]
|
89 |
+
train_size = int(split[0] * len(self.dataset))
|
90 |
+
val_size = int(split[1] * len(self.dataset))
|
91 |
+
self.data_train, self.data_val = random_split(
|
92 |
+
self.dataset, [train_size, val_size]
|
93 |
+
)
|
94 |
+
|
95 |
+
def train_dataloader(self) -> DataLoader:
|
96 |
+
return DataLoader(
|
97 |
+
dataset=self.data_train,
|
98 |
+
batch_size=self.batch_size,
|
99 |
+
num_workers=self.num_workers,
|
100 |
+
pin_memory=self.pin_memory,
|
101 |
+
shuffle=True,
|
102 |
+
)
|
103 |
+
|
104 |
+
def val_dataloader(self) -> DataLoader:
|
105 |
+
return DataLoader(
|
106 |
+
dataset=self.data_val,
|
107 |
+
batch_size=self.batch_size,
|
108 |
+
num_workers=self.num_workers,
|
109 |
+
pin_memory=self.pin_memory,
|
110 |
+
shuffle=False,
|
111 |
+
)
|
exp/audio_diffusion.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
model:
|
3 |
+
_target_: models.RemFXModel
|
4 |
+
lr: 1e-4
|
5 |
+
lr_beta1: 0.95
|
6 |
+
lr_beta2: 0.999
|
7 |
+
lr_eps: 1e-6
|
8 |
+
lr_weight_decay: 1e-3
|
9 |
+
network:
|
10 |
+
_target_: models.DiffusionGenerationModel
|
11 |
+
n_channels: 1
|
12 |
+
datamodule:
|
13 |
+
dataset:
|
14 |
+
effect_types: ["Clean"]
|
15 |
+
batch_size: 2
|
exp/demucs.yaml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# @package _global_
|
exp/umx.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
model:
|
3 |
+
_target_: models.RemFXModel
|
4 |
+
lr: 1e-4
|
5 |
+
lr_beta1: 0.95
|
6 |
+
lr_beta2: 0.999
|
7 |
+
lr_eps: 1e-6
|
8 |
+
lr_weight_decay: 1e-3
|
9 |
+
network:
|
10 |
+
_target_: models.OpenUnmixModel
|
11 |
+
n_fft: 2048
|
12 |
+
hop_length: 512
|
13 |
+
n_channels: 1
|
14 |
+
alpha: 0.3
|
15 |
+
sample_rate: ${sample_rate}
|
16 |
+
datamodule:
|
17 |
+
dataset:
|
18 |
+
effect_types: ["RAT"]
|
main.py
DELETED
@@ -1,19 +0,0 @@
|
|
1 |
-
from audio_diffusion_pytorch import AudioDiffusionModel
|
2 |
-
import torch
|
3 |
-
from tqdm import tqdm
|
4 |
-
import wandb
|
5 |
-
|
6 |
-
model = AudioDiffusionModel(in_channels=1)
|
7 |
-
wandb.init(project="RemFX", entity="mattricesound")
|
8 |
-
|
9 |
-
x = torch.randn(2, 1, 2**18)
|
10 |
-
for i in tqdm(range(100)):
|
11 |
-
loss = model(x)
|
12 |
-
loss.backward()
|
13 |
-
if i % 10 == 0:
|
14 |
-
print(loss)
|
15 |
-
wandb.log({"loss": loss})
|
16 |
-
|
17 |
-
|
18 |
-
noise = torch.randn(2, 1, 2**18)
|
19 |
-
sampled = model.sample(noise=noise, num_steps=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
models.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import torch
|
2 |
-
from torch import Tensor
|
3 |
import pytorch_lightning as pl
|
4 |
from einops import rearrange
|
5 |
import wandb
|
6 |
from audio_diffusion_pytorch import AudioDiffusionModel
|
|
|
7 |
|
8 |
import sys
|
9 |
|
@@ -14,50 +15,49 @@ from umx.openunmix.model import OpenUnmix, Separator
|
|
14 |
SAMPLE_RATE = 22050 # From audio-diffusion-pytorch
|
15 |
|
16 |
|
17 |
-
class
|
18 |
def __init__(
|
19 |
self,
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
):
|
24 |
super().__init__()
|
25 |
-
self.
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
self.
|
30 |
-
self.
|
31 |
-
self.alpha = alpha
|
32 |
-
window = torch.hann_window(n_fft)
|
33 |
-
self.register_buffer("window", window)
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
def training_step(self, batch, batch_idx):
|
39 |
-
loss
|
40 |
return loss
|
41 |
|
42 |
def validation_step(self, batch, batch_idx):
|
43 |
-
loss
|
44 |
-
return loss, Y
|
45 |
|
46 |
def common_step(self, batch, batch_idx, mode: str = "train"):
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
Y_hat = spectrogram(
|
51 |
-
target, self.window, self.n_fft, self.hop_length, self.alpha
|
52 |
-
)
|
53 |
-
loss = torch.nn.functional.mse_loss(Y, Y_hat)
|
54 |
-
self.log(f"{mode}_loss", loss, on_step=True, on_epoch=True)
|
55 |
-
return loss, Y
|
56 |
-
|
57 |
-
def configure_optimizers(self):
|
58 |
-
return torch.optim.Adam(
|
59 |
-
self.parameters(), lr=1e-4, betas=(0.95, 0.999), eps=1e-6, weight_decay=1e-3
|
60 |
-
)
|
61 |
|
62 |
def on_validation_epoch_start(self):
|
63 |
self.log_next = True
|
@@ -65,14 +65,7 @@ class OpenUnmixModel(pl.LightningModule):
|
|
65 |
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
|
66 |
if self.log_next:
|
67 |
x, target, label = batch
|
68 |
-
|
69 |
-
target_models={"other": self.model},
|
70 |
-
nb_channels=1,
|
71 |
-
sample_rate=SAMPLE_RATE,
|
72 |
-
n_fft=self.n_fft,
|
73 |
-
n_hop=self.hop_length,
|
74 |
-
).to(self.device)
|
75 |
-
outputs = s(x).squeeze(1)
|
76 |
log_wandb_audio_batch(
|
77 |
logger=self.logger,
|
78 |
id="sample",
|
@@ -83,12 +76,12 @@ class OpenUnmixModel(pl.LightningModule):
|
|
83 |
log_wandb_audio_batch(
|
84 |
logger=self.logger,
|
85 |
id="prediction",
|
86 |
-
samples=
|
87 |
sampling_rate=SAMPLE_RATE,
|
88 |
caption=f"Epoch {self.current_epoch}",
|
89 |
)
|
90 |
log_wandb_audio_batch(
|
91 |
-
logger=self.
|
92 |
id="target",
|
93 |
samples=target.cpu(),
|
94 |
sampling_rate=SAMPLE_RATE,
|
@@ -97,55 +90,65 @@ class OpenUnmixModel(pl.LightningModule):
|
|
97 |
self.log_next = False
|
98 |
|
99 |
|
100 |
-
class
|
101 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
super().__init__()
|
103 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
-
def
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
def training_step(self, batch, batch_idx):
|
112 |
-
loss = self.common_step(batch, batch_idx, mode="train")
|
113 |
return loss
|
114 |
|
115 |
-
def
|
116 |
-
|
117 |
|
118 |
-
def common_step(self, batch, batch_idx, mode: str = "train"):
|
119 |
-
x, target, label = batch
|
120 |
-
loss = self(x)
|
121 |
-
self.log(f"{mode}_loss", loss, on_step=True, on_epoch=True)
|
122 |
-
return loss
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
)
|
128 |
-
|
129 |
-
def on_validation_epoch_start(self):
|
130 |
-
self.log_next = True
|
131 |
|
132 |
-
def
|
133 |
x, target, label = batch
|
134 |
-
|
135 |
-
self.log_sample(x)
|
136 |
-
self.log_next = False
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
noise = torch.randn(batch.shape, device=self.device)
|
142 |
-
sampled = self.sample(noise=noise, num_steps=num_steps) # Suggested range: 2-50
|
143 |
-
log_wandb_audio_batch(
|
144 |
-
id="sample",
|
145 |
-
samples=sampled,
|
146 |
-
sampling_rate=SAMPLE_RATE,
|
147 |
-
caption=f"Sampled in {num_steps} steps",
|
148 |
-
)
|
149 |
|
150 |
|
151 |
def log_wandb_audio_batch(
|
|
|
1 |
import torch
|
2 |
+
from torch import Tensor, nn
|
3 |
import pytorch_lightning as pl
|
4 |
from einops import rearrange
|
5 |
import wandb
|
6 |
from audio_diffusion_pytorch import AudioDiffusionModel
|
7 |
+
import auraloss
|
8 |
|
9 |
import sys
|
10 |
|
|
|
15 |
SAMPLE_RATE = 22050 # From audio-diffusion-pytorch
|
16 |
|
17 |
|
18 |
+
class RemFXModel(pl.LightningModule):
|
19 |
def __init__(
|
20 |
self,
|
21 |
+
lr: float,
|
22 |
+
lr_beta1: float,
|
23 |
+
lr_beta2: float,
|
24 |
+
lr_eps: float,
|
25 |
+
lr_weight_decay: float,
|
26 |
+
network: nn.Module,
|
27 |
):
|
28 |
super().__init__()
|
29 |
+
self.lr = lr
|
30 |
+
self.lr_beta1 = lr_beta1
|
31 |
+
self.lr_beta2 = lr_beta2
|
32 |
+
self.lr_eps = lr_eps
|
33 |
+
self.lr_weight_decay = lr_weight_decay
|
34 |
+
self.model = network
|
|
|
|
|
|
|
35 |
|
36 |
+
@property
|
37 |
+
def device(self):
|
38 |
+
return next(self.model.parameters()).device
|
39 |
+
|
40 |
+
def configure_optimizers(self):
|
41 |
+
optimizer = torch.optim.AdamW(
|
42 |
+
list(self.model.parameters()),
|
43 |
+
lr=self.lr,
|
44 |
+
betas=(self.lr_beta1, self.lr_beta2),
|
45 |
+
eps=self.lr_eps,
|
46 |
+
weight_decay=self.lr_weight_decay,
|
47 |
+
)
|
48 |
+
return optimizer
|
49 |
|
50 |
def training_step(self, batch, batch_idx):
|
51 |
+
loss = self.common_step(batch, batch_idx, mode="train")
|
52 |
return loss
|
53 |
|
54 |
def validation_step(self, batch, batch_idx):
|
55 |
+
loss = self.common_step(batch, batch_idx, mode="valid")
|
|
|
56 |
|
57 |
def common_step(self, batch, batch_idx, mode: str = "train"):
|
58 |
+
loss = self.model(batch)
|
59 |
+
self.log(f"{mode}_loss", loss)
|
60 |
+
return loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
def on_validation_epoch_start(self):
|
63 |
self.log_next = True
|
|
|
65 |
def on_validation_batch_start(self, batch, batch_idx, dataloader_idx):
|
66 |
if self.log_next:
|
67 |
x, target, label = batch
|
68 |
+
y = self.model.sample(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
log_wandb_audio_batch(
|
70 |
logger=self.logger,
|
71 |
id="sample",
|
|
|
76 |
log_wandb_audio_batch(
|
77 |
logger=self.logger,
|
78 |
id="prediction",
|
79 |
+
samples=y.cpu(),
|
80 |
sampling_rate=SAMPLE_RATE,
|
81 |
caption=f"Epoch {self.current_epoch}",
|
82 |
)
|
83 |
log_wandb_audio_batch(
|
84 |
+
logger=self.logger,
|
85 |
id="target",
|
86 |
samples=target.cpu(),
|
87 |
sampling_rate=SAMPLE_RATE,
|
|
|
90 |
self.log_next = False
|
91 |
|
92 |
|
93 |
+
class OpenUnmixModel(torch.nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
n_fft: int = 2048,
|
97 |
+
hop_length: int = 512,
|
98 |
+
n_channels: int = 1,
|
99 |
+
alpha: float = 0.3,
|
100 |
+
sample_rate: int = 22050,
|
101 |
+
):
|
102 |
super().__init__()
|
103 |
+
self.n_channels = n_channels
|
104 |
+
self.n_fft = n_fft
|
105 |
+
self.hop_length = hop_length
|
106 |
+
self.alpha = alpha
|
107 |
+
window = torch.hann_window(n_fft)
|
108 |
+
self.register_buffer("window", window)
|
109 |
|
110 |
+
self.num_bins = self.n_fft // 2 + 1
|
111 |
+
self.sample_rate = sample_rate
|
112 |
+
self.model = OpenUnmix(
|
113 |
+
nb_channels=self.n_channels,
|
114 |
+
nb_bins=self.num_bins,
|
115 |
+
)
|
116 |
+
self.separator = Separator(
|
117 |
+
target_models={"other": self.model},
|
118 |
+
nb_channels=self.n_channels,
|
119 |
+
sample_rate=self.sample_rate,
|
120 |
+
n_fft=self.n_fft,
|
121 |
+
n_hop=self.hop_length,
|
122 |
+
)
|
123 |
+
self.loss_fn = auraloss.freq.MultiResolutionSTFTLoss(
|
124 |
+
n_bins=self.num_bins, sample_rate=self.sample_rate
|
125 |
+
)
|
126 |
|
127 |
+
def forward(self, batch):
|
128 |
+
x, target, label = batch
|
129 |
+
X = spectrogram(x, self.window, self.n_fft, self.hop_length, self.alpha)
|
130 |
+
Y = self.model(X)
|
131 |
+
sep_out = self.separator(x).squeeze(1)
|
132 |
+
loss = self.loss_fn(sep_out, target)
|
133 |
|
|
|
|
|
134 |
return loss
|
135 |
|
136 |
+
def sample(self, x: Tensor) -> Tensor:
|
137 |
+
return self.separator(x).squeeze(1)
|
138 |
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
class DiffusionGenerationModel(nn.Module):
|
141 |
+
def __init__(self, n_channels: int = 1):
|
142 |
+
super().__init__()
|
143 |
+
self.model = AudioDiffusionModel(in_channels=n_channels)
|
|
|
|
|
|
|
144 |
|
145 |
+
def forward(self, batch):
|
146 |
x, target, label = batch
|
147 |
+
return self.model(x)
|
|
|
|
|
148 |
|
149 |
+
def sample(self, x: Tensor, num_steps: int = 10) -> Tensor:
|
150 |
+
noise = torch.randn(x.shape)
|
151 |
+
return self.model.sample(noise, num_steps=num_steps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
|
154 |
def log_wandb_audio_batch(
|
Experiments.ipynb → notebooks/Experiments.ipynb
RENAMED
File without changes
|
diffusion_test.ipynb → notebooks/diffusion_test.ipynb
RENAMED
File without changes
|
egfx.ipynb → notebooks/egfx.ipynb
RENAMED
File without changes
|
guitar_generation_test.ipynb → notebooks/guitar_generation_test.ipynb
RENAMED
File without changes
|
setup.py
CHANGED
@@ -42,6 +42,8 @@ setup(
|
|
42 |
"ema_pytorch",
|
43 |
"einops",
|
44 |
"librosa",
|
|
|
|
|
45 |
],
|
46 |
include_package_data=True,
|
47 |
license="Apache License 2.0",
|
|
|
42 |
"ema_pytorch",
|
43 |
"einops",
|
44 |
"librosa",
|
45 |
+
"hydra-core",
|
46 |
+
"auraloss",
|
47 |
],
|
48 |
include_package_data=True,
|
49 |
license="Apache License 2.0",
|
shell_vars.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
export DATASET_ROOT="/Users/matthewrice/Developer/remfx/data/egfx"
|
2 |
+
export WANDB_PROJECT="RemFX"
|
3 |
+
export WANDB_ENTITY="mattricesound"
|
train.py
CHANGED
@@ -1,35 +1,50 @@
|
|
1 |
from pytorch_lightning.loggers import WandbLogger
|
2 |
import pytorch_lightning as pl
|
3 |
-
import torch
|
4 |
from torch.utils.data import DataLoader
|
5 |
from datasets import GuitarFXDataset
|
6 |
from models import DiffusionGenerationModel, OpenUnmixModel
|
|
|
|
|
|
|
7 |
|
|
|
8 |
|
9 |
-
SAMPLE_RATE = 22050
|
10 |
-
TRAIN_SPLIT = 0.8
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
sample_rate=SAMPLE_RATE,
|
19 |
-
effect_type=["Phaser"],
|
20 |
-
)
|
21 |
-
train_size = int(TRAIN_SPLIT * len(guitfx))
|
22 |
-
val_size = len(guitfx) - train_size
|
23 |
-
train_dataset, val_dataset = torch.utils.data.random_split(
|
24 |
-
guitfx, [train_size, val_size]
|
25 |
-
)
|
26 |
-
train = DataLoader(train_dataset, batch_size=2)
|
27 |
-
val = DataLoader(val_dataset, batch_size=2)
|
28 |
|
29 |
-
#
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
if __name__ == "__main__":
|
|
|
1 |
from pytorch_lightning.loggers import WandbLogger
|
2 |
import pytorch_lightning as pl
|
|
|
3 |
from torch.utils.data import DataLoader
|
4 |
from datasets import GuitarFXDataset
|
5 |
from models import DiffusionGenerationModel, OpenUnmixModel
|
6 |
+
import hydra
|
7 |
+
from omegaconf import DictConfig
|
8 |
+
import utils
|
9 |
|
10 |
+
log = utils.get_logger(__name__)
|
11 |
|
|
|
|
|
12 |
|
13 |
+
@hydra.main(version_base=None, config_path=".", config_name="config.yaml")
|
14 |
+
def main(cfg: DictConfig):
|
15 |
+
# Apply seed for reproducibility
|
16 |
+
print(cfg)
|
17 |
+
pl.seed_everything(cfg.seed)
|
18 |
|
19 |
+
log.info(f"Instantiating datamodule <{cfg.datamodule._target_}>.")
|
20 |
+
datamodule = hydra.utils.instantiate(cfg.datamodule, _convert_="partial")
|
21 |
+
|
22 |
+
log.info(f"Instantiating model <{cfg.model._target_}>.")
|
23 |
+
model = hydra.utils.instantiate(cfg.model, _convert_="partial")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Init all callbacks
|
26 |
+
callbacks = []
|
27 |
+
if "callbacks" in cfg:
|
28 |
+
for _, cb_conf in cfg["callbacks"].items():
|
29 |
+
if "_target_" in cb_conf:
|
30 |
+
log.info(f"Instantiating callback <{cb_conf._target_}>.")
|
31 |
+
callbacks.append(hydra.utils.instantiate(cb_conf, _convert_="partial"))
|
32 |
|
33 |
+
logger = hydra.utils.instantiate(cfg.logger, _convert_="partial")
|
34 |
+
log.info(f"Instantiating trainer <{cfg.trainer._target_}>.")
|
35 |
+
trainer = hydra.utils.instantiate(
|
36 |
+
cfg.trainer, callbacks=callbacks, logger=logger, _convert_="partial"
|
37 |
+
)
|
38 |
+
log.info("Logging hyperparameters!")
|
39 |
+
utils.log_hyperparameters(
|
40 |
+
config=cfg,
|
41 |
+
model=model,
|
42 |
+
datamodule=datamodule,
|
43 |
+
trainer=trainer,
|
44 |
+
callbacks=callbacks,
|
45 |
+
logger=logger,
|
46 |
+
)
|
47 |
+
trainer.fit(model=model, datamodule=datamodule)
|
48 |
|
49 |
|
50 |
if __name__ == "__main__":
|
utils.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import List
|
3 |
+
import pytorch_lightning as pl
|
4 |
+
from omegaconf import DictConfig
|
5 |
+
from pytorch_lightning.utilities import rank_zero_only
|
6 |
+
|
7 |
+
|
8 |
+
def get_logger(name=__name__) -> logging.Logger:
|
9 |
+
"""Initializes multi-GPU-friendly python command line logger."""
|
10 |
+
|
11 |
+
logger = logging.getLogger(name)
|
12 |
+
|
13 |
+
# this ensures all logging levels get marked with the rank zero decorator
|
14 |
+
# otherwise logs would get multiplied for each GPU process in multi-GPU setup
|
15 |
+
for level in (
|
16 |
+
"debug",
|
17 |
+
"info",
|
18 |
+
"warning",
|
19 |
+
"error",
|
20 |
+
"exception",
|
21 |
+
"fatal",
|
22 |
+
"critical",
|
23 |
+
):
|
24 |
+
setattr(logger, level, rank_zero_only(getattr(logger, level)))
|
25 |
+
|
26 |
+
return logger
|
27 |
+
|
28 |
+
|
29 |
+
log = get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
@rank_zero_only
|
33 |
+
def log_hyperparameters(
|
34 |
+
config: DictConfig,
|
35 |
+
model: pl.LightningModule,
|
36 |
+
datamodule: pl.LightningDataModule,
|
37 |
+
trainer: pl.Trainer,
|
38 |
+
callbacks: List[pl.Callback],
|
39 |
+
logger: pl.loggers.LightningLoggerBase,
|
40 |
+
) -> None:
|
41 |
+
"""Controls which config parts are saved by Lightning loggers.
|
42 |
+
Additionaly saves:
|
43 |
+
- number of model parameters
|
44 |
+
"""
|
45 |
+
|
46 |
+
if not trainer.logger:
|
47 |
+
return
|
48 |
+
|
49 |
+
hparams = {}
|
50 |
+
|
51 |
+
# choose which parts of hydra config will be saved to loggers
|
52 |
+
hparams["model"] = config["model"]
|
53 |
+
|
54 |
+
# save number of model parameters
|
55 |
+
hparams["model/params/total"] = sum(p.numel() for p in model.parameters())
|
56 |
+
hparams["model/params/trainable"] = sum(
|
57 |
+
p.numel() for p in model.parameters() if p.requires_grad
|
58 |
+
)
|
59 |
+
hparams["model/params/non_trainable"] = sum(
|
60 |
+
p.numel() for p in model.parameters() if not p.requires_grad
|
61 |
+
)
|
62 |
+
|
63 |
+
hparams["datamodule"] = config["datamodule"]
|
64 |
+
hparams["trainer"] = config["trainer"]
|
65 |
+
|
66 |
+
if "seed" in config:
|
67 |
+
hparams["seed"] = config["seed"]
|
68 |
+
if "callbacks" in config:
|
69 |
+
hparams["callbacks"] = config["callbacks"]
|
70 |
+
|
71 |
+
logger.experiment.config.update(hparams)
|