Spaces:
Runtime error
Runtime error
Commit
·
bc47650
1
Parent(s):
6409531
Update conversion code
Browse files- convertosd.py +87 -11
- convertosd_ld.py +226 -0
convertosd.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
2 |
# *Only* converts the UNet, VAE, and Text Encoder.
|
3 |
# Does not convert optimizer state or any other thing.
|
4 |
-
# Written by jachiam
|
5 |
|
6 |
import argparse
|
7 |
import os.path as osp
|
|
|
8 |
|
9 |
import torch
|
10 |
-
import gc
|
11 |
|
12 |
# =================#
|
13 |
# UNet Conversion #
|
@@ -177,10 +177,11 @@ def convert_vae_state_dict(vae_state_dict):
|
|
177 |
mapping[k] = v
|
178 |
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
179 |
weights_to_convert = ["q", "k", "v", "proj_out"]
|
180 |
-
print("
|
181 |
for k, v in new_state_dict.items():
|
182 |
for weight_name in weights_to_convert:
|
183 |
if f"mid.attn_1.{weight_name}.weight" in k:
|
|
|
184 |
new_state_dict[k] = reshape_weight_for_sd(v)
|
185 |
return new_state_dict
|
186 |
|
@@ -188,7 +189,72 @@ def convert_vae_state_dict(vae_state_dict):
|
|
188 |
# =========================#
|
189 |
# Text Encoder Conversion #
|
190 |
# =========================#
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
|
194 |
def convert_text_enc_state_dict(text_enc_dict):
|
@@ -201,26 +267,36 @@ def convert(model_path, checkpoint_path):
|
|
201 |
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
202 |
|
203 |
# Convert the UNet model
|
204 |
-
unet_state_dict = torch.load(unet_path, map_location=
|
205 |
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
206 |
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
207 |
|
208 |
# Convert the VAE model
|
209 |
-
vae_state_dict = torch.load(vae_path, map_location=
|
210 |
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
211 |
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
212 |
|
213 |
# Convert the text encoder model
|
214 |
-
text_enc_dict = torch.load(text_enc_path, map_location=
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
# Put together new checkpoint
|
219 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
220 |
-
|
221 |
-
state_dict = {k:v.half() for k,v in state_dict.items()}
|
222 |
state_dict = {"state_dict": state_dict}
|
223 |
torch.save(state_dict, checkpoint_path)
|
224 |
del state_dict, text_enc_dict, vae_state_dict, unet_state_dict
|
225 |
torch.cuda.empty_cache()
|
226 |
gc.collect()
|
|
|
|
1 |
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
2 |
# *Only* converts the UNet, VAE, and Text Encoder.
|
3 |
# Does not convert optimizer state or any other thing.
|
|
|
4 |
|
5 |
import argparse
|
6 |
import os.path as osp
|
7 |
+
import re
|
8 |
|
9 |
import torch
|
10 |
+
import gc
|
11 |
|
12 |
# =================#
|
13 |
# UNet Conversion #
|
|
|
177 |
mapping[k] = v
|
178 |
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
179 |
weights_to_convert = ["q", "k", "v", "proj_out"]
|
180 |
+
print("Converting to CKPT ...")
|
181 |
for k, v in new_state_dict.items():
|
182 |
for weight_name in weights_to_convert:
|
183 |
if f"mid.attn_1.{weight_name}.weight" in k:
|
184 |
+
print(f"Reshaping {k} for SD format")
|
185 |
new_state_dict[k] = reshape_weight_for_sd(v)
|
186 |
return new_state_dict
|
187 |
|
|
|
189 |
# =========================#
|
190 |
# Text Encoder Conversion #
|
191 |
# =========================#
|
192 |
+
|
193 |
+
|
194 |
+
textenc_conversion_lst = [
|
195 |
+
# (stable-diffusion, HF Diffusers)
|
196 |
+
("resblocks.", "text_model.encoder.layers."),
|
197 |
+
("ln_1", "layer_norm1"),
|
198 |
+
("ln_2", "layer_norm2"),
|
199 |
+
(".c_fc.", ".fc1."),
|
200 |
+
(".c_proj.", ".fc2."),
|
201 |
+
(".attn", ".self_attn"),
|
202 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
203 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
204 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
205 |
+
]
|
206 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
207 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
208 |
+
|
209 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
210 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
211 |
+
|
212 |
+
|
213 |
+
def convert_text_enc_state_dict_v20(text_enc_dict):
|
214 |
+
new_state_dict = {}
|
215 |
+
capture_qkv_weight = {}
|
216 |
+
capture_qkv_bias = {}
|
217 |
+
for k, v in text_enc_dict.items():
|
218 |
+
if (
|
219 |
+
k.endswith(".self_attn.q_proj.weight")
|
220 |
+
or k.endswith(".self_attn.k_proj.weight")
|
221 |
+
or k.endswith(".self_attn.v_proj.weight")
|
222 |
+
):
|
223 |
+
k_pre = k[: -len(".q_proj.weight")]
|
224 |
+
k_code = k[-len("q_proj.weight")]
|
225 |
+
if k_pre not in capture_qkv_weight:
|
226 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
227 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
228 |
+
continue
|
229 |
+
|
230 |
+
if (
|
231 |
+
k.endswith(".self_attn.q_proj.bias")
|
232 |
+
or k.endswith(".self_attn.k_proj.bias")
|
233 |
+
or k.endswith(".self_attn.v_proj.bias")
|
234 |
+
):
|
235 |
+
k_pre = k[: -len(".q_proj.bias")]
|
236 |
+
k_code = k[-len("q_proj.bias")]
|
237 |
+
if k_pre not in capture_qkv_bias:
|
238 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
239 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
240 |
+
continue
|
241 |
+
|
242 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
243 |
+
new_state_dict[relabelled_key] = v
|
244 |
+
|
245 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
246 |
+
if None in tensors:
|
247 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
248 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
249 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
250 |
+
|
251 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
252 |
+
if None in tensors:
|
253 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
254 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
255 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
256 |
+
|
257 |
+
return new_state_dict
|
258 |
|
259 |
|
260 |
def convert_text_enc_state_dict(text_enc_dict):
|
|
|
267 |
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
268 |
|
269 |
# Convert the UNet model
|
270 |
+
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
271 |
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
272 |
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
273 |
|
274 |
# Convert the VAE model
|
275 |
+
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
276 |
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
277 |
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
278 |
|
279 |
# Convert the text encoder model
|
280 |
+
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
281 |
+
|
282 |
+
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
283 |
+
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
284 |
+
|
285 |
+
if is_v20_model:
|
286 |
+
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
287 |
+
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
288 |
+
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
|
289 |
+
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
290 |
+
else:
|
291 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
292 |
+
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
293 |
|
294 |
# Put together new checkpoint
|
295 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
296 |
+
state_dict = {k: v.half() for k, v in state_dict.items()}
|
|
|
297 |
state_dict = {"state_dict": state_dict}
|
298 |
torch.save(state_dict, checkpoint_path)
|
299 |
del state_dict, text_enc_dict, vae_state_dict, unet_state_dict
|
300 |
torch.cuda.empty_cache()
|
301 |
gc.collect()
|
302 |
+
|
convertosd_ld.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
2 |
+
# *Only* converts the UNet, VAE, and Text Encoder.
|
3 |
+
# Does not convert optimizer state or any other thing.
|
4 |
+
# Written by jachiam
|
5 |
+
|
6 |
+
import argparse
|
7 |
+
import os.path as osp
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import gc
|
11 |
+
|
12 |
+
# =================#
|
13 |
+
# UNet Conversion #
|
14 |
+
# =================#
|
15 |
+
|
16 |
+
unet_conversion_map = [
|
17 |
+
# (stable-diffusion, HF Diffusers)
|
18 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
19 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
20 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
21 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
22 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
23 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
24 |
+
("out.0.weight", "conv_norm_out.weight"),
|
25 |
+
("out.0.bias", "conv_norm_out.bias"),
|
26 |
+
("out.2.weight", "conv_out.weight"),
|
27 |
+
("out.2.bias", "conv_out.bias"),
|
28 |
+
]
|
29 |
+
|
30 |
+
unet_conversion_map_resnet = [
|
31 |
+
# (stable-diffusion, HF Diffusers)
|
32 |
+
("in_layers.0", "norm1"),
|
33 |
+
("in_layers.2", "conv1"),
|
34 |
+
("out_layers.0", "norm2"),
|
35 |
+
("out_layers.3", "conv2"),
|
36 |
+
("emb_layers.1", "time_emb_proj"),
|
37 |
+
("skip_connection", "conv_shortcut"),
|
38 |
+
]
|
39 |
+
|
40 |
+
unet_conversion_map_layer = []
|
41 |
+
# hardcoded number of downblocks and resnets/attentions...
|
42 |
+
# would need smarter logic for other networks.
|
43 |
+
for i in range(4):
|
44 |
+
# loop over downblocks/upblocks
|
45 |
+
|
46 |
+
for j in range(2):
|
47 |
+
# loop over resnets/attentions for downblocks
|
48 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
49 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
50 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
51 |
+
|
52 |
+
if i < 3:
|
53 |
+
# no attention layers in down_blocks.3
|
54 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
55 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
56 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
57 |
+
|
58 |
+
for j in range(3):
|
59 |
+
# loop over resnets/attentions for upblocks
|
60 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
61 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
62 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
63 |
+
|
64 |
+
if i > 0:
|
65 |
+
# no attention layers in up_blocks.0
|
66 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
67 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
68 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
69 |
+
|
70 |
+
if i < 3:
|
71 |
+
# no downsample in down_blocks.3
|
72 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
73 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
74 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
75 |
+
|
76 |
+
# no upsample in up_blocks.3
|
77 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
78 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
79 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
80 |
+
|
81 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
82 |
+
sd_mid_atn_prefix = "middle_block.1."
|
83 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
84 |
+
|
85 |
+
for j in range(2):
|
86 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
87 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
88 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
89 |
+
|
90 |
+
|
91 |
+
def convert_unet_state_dict(unet_state_dict):
|
92 |
+
# buyer beware: this is a *brittle* function,
|
93 |
+
# and correct output requires that all of these pieces interact in
|
94 |
+
# the exact order in which I have arranged them.
|
95 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
96 |
+
for sd_name, hf_name in unet_conversion_map:
|
97 |
+
mapping[hf_name] = sd_name
|
98 |
+
for k, v in mapping.items():
|
99 |
+
if "resnets" in k:
|
100 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
101 |
+
v = v.replace(hf_part, sd_part)
|
102 |
+
mapping[k] = v
|
103 |
+
for k, v in mapping.items():
|
104 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
105 |
+
v = v.replace(hf_part, sd_part)
|
106 |
+
mapping[k] = v
|
107 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
108 |
+
return new_state_dict
|
109 |
+
|
110 |
+
|
111 |
+
# ================#
|
112 |
+
# VAE Conversion #
|
113 |
+
# ================#
|
114 |
+
|
115 |
+
vae_conversion_map = [
|
116 |
+
# (stable-diffusion, HF Diffusers)
|
117 |
+
("nin_shortcut", "conv_shortcut"),
|
118 |
+
("norm_out", "conv_norm_out"),
|
119 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
120 |
+
]
|
121 |
+
|
122 |
+
for i in range(4):
|
123 |
+
# down_blocks have two resnets
|
124 |
+
for j in range(2):
|
125 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
126 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
127 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
128 |
+
|
129 |
+
if i < 3:
|
130 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
131 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
132 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
133 |
+
|
134 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
135 |
+
sd_upsample_prefix = f"up.{3-i}.upsample."
|
136 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
137 |
+
|
138 |
+
# up_blocks have three resnets
|
139 |
+
# also, up blocks in hf are numbered in reverse from sd
|
140 |
+
for j in range(3):
|
141 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
142 |
+
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
143 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
144 |
+
|
145 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
146 |
+
for i in range(2):
|
147 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
148 |
+
sd_mid_res_prefix = f"mid.block_{i+1}."
|
149 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
150 |
+
|
151 |
+
|
152 |
+
vae_conversion_map_attn = [
|
153 |
+
# (stable-diffusion, HF Diffusers)
|
154 |
+
("norm.", "group_norm."),
|
155 |
+
("q.", "query."),
|
156 |
+
("k.", "key."),
|
157 |
+
("v.", "value."),
|
158 |
+
("proj_out.", "proj_attn."),
|
159 |
+
]
|
160 |
+
|
161 |
+
|
162 |
+
def reshape_weight_for_sd(w):
|
163 |
+
# convert HF linear weights to SD conv2d weights
|
164 |
+
return w.reshape(*w.shape, 1, 1)
|
165 |
+
|
166 |
+
|
167 |
+
def convert_vae_state_dict(vae_state_dict):
|
168 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
169 |
+
for k, v in mapping.items():
|
170 |
+
for sd_part, hf_part in vae_conversion_map:
|
171 |
+
v = v.replace(hf_part, sd_part)
|
172 |
+
mapping[k] = v
|
173 |
+
for k, v in mapping.items():
|
174 |
+
if "attentions" in k:
|
175 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
176 |
+
v = v.replace(hf_part, sd_part)
|
177 |
+
mapping[k] = v
|
178 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
179 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
180 |
+
print("[1;32mConverting to CKPT ...")
|
181 |
+
for k, v in new_state_dict.items():
|
182 |
+
for weight_name in weights_to_convert:
|
183 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
184 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
185 |
+
return new_state_dict
|
186 |
+
|
187 |
+
|
188 |
+
# =========================#
|
189 |
+
# Text Encoder Conversion #
|
190 |
+
# =========================#
|
191 |
+
# pretty much a no-op
|
192 |
+
|
193 |
+
|
194 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
195 |
+
return text_enc_dict
|
196 |
+
|
197 |
+
|
198 |
+
def convert(model_path, checkpoint_path):
|
199 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
200 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
201 |
+
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
202 |
+
|
203 |
+
# Convert the UNet model
|
204 |
+
unet_state_dict = torch.load(unet_path, map_location='cpu')
|
205 |
+
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
206 |
+
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
207 |
+
|
208 |
+
# Convert the VAE model
|
209 |
+
vae_state_dict = torch.load(vae_path, map_location='cpu')
|
210 |
+
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
211 |
+
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
212 |
+
|
213 |
+
# Convert the text encoder model
|
214 |
+
text_enc_dict = torch.load(text_enc_path, map_location='cpu')
|
215 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
216 |
+
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
217 |
+
|
218 |
+
# Put together new checkpoint
|
219 |
+
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
220 |
+
|
221 |
+
state_dict = {k:v.half() for k,v in state_dict.items()}
|
222 |
+
state_dict = {"state_dict": state_dict}
|
223 |
+
torch.save(state_dict, checkpoint_path)
|
224 |
+
del state_dict, text_enc_dict, vae_state_dict, unet_state_dict
|
225 |
+
torch.cuda.empty_cache()
|
226 |
+
gc.collect()
|