multimodalart HF staff commited on
Commit
bc47650
·
1 Parent(s): 6409531

Update conversion code

Browse files
Files changed (2) hide show
  1. convertosd.py +87 -11
  2. convertosd_ld.py +226 -0
convertosd.py CHANGED
@@ -1,13 +1,13 @@
1
  # Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
2
  # *Only* converts the UNet, VAE, and Text Encoder.
3
  # Does not convert optimizer state or any other thing.
4
- # Written by jachiam
5
 
6
  import argparse
7
  import os.path as osp
 
8
 
9
  import torch
10
- import gc
11
 
12
  # =================#
13
  # UNet Conversion #
@@ -177,10 +177,11 @@ def convert_vae_state_dict(vae_state_dict):
177
  mapping[k] = v
178
  new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
179
  weights_to_convert = ["q", "k", "v", "proj_out"]
180
- print("Converting to CKPT ...")
181
  for k, v in new_state_dict.items():
182
  for weight_name in weights_to_convert:
183
  if f"mid.attn_1.{weight_name}.weight" in k:
 
184
  new_state_dict[k] = reshape_weight_for_sd(v)
185
  return new_state_dict
186
 
@@ -188,7 +189,72 @@ def convert_vae_state_dict(vae_state_dict):
188
  # =========================#
189
  # Text Encoder Conversion #
190
  # =========================#
191
- # pretty much a no-op
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
 
193
 
194
  def convert_text_enc_state_dict(text_enc_dict):
@@ -201,26 +267,36 @@ def convert(model_path, checkpoint_path):
201
  text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
202
 
203
  # Convert the UNet model
204
- unet_state_dict = torch.load(unet_path, map_location='cpu')
205
  unet_state_dict = convert_unet_state_dict(unet_state_dict)
206
  unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
207
 
208
  # Convert the VAE model
209
- vae_state_dict = torch.load(vae_path, map_location='cpu')
210
  vae_state_dict = convert_vae_state_dict(vae_state_dict)
211
  vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
212
 
213
  # Convert the text encoder model
214
- text_enc_dict = torch.load(text_enc_path, map_location='cpu')
215
- text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
216
- text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
 
 
 
 
 
 
 
 
 
 
217
 
218
  # Put together new checkpoint
219
  state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
220
-
221
- state_dict = {k:v.half() for k,v in state_dict.items()}
222
  state_dict = {"state_dict": state_dict}
223
  torch.save(state_dict, checkpoint_path)
224
  del state_dict, text_enc_dict, vae_state_dict, unet_state_dict
225
  torch.cuda.empty_cache()
226
  gc.collect()
 
 
1
  # Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
2
  # *Only* converts the UNet, VAE, and Text Encoder.
3
  # Does not convert optimizer state or any other thing.
 
4
 
5
  import argparse
6
  import os.path as osp
7
+ import re
8
 
9
  import torch
10
+ import gc
11
 
12
  # =================#
13
  # UNet Conversion #
 
177
  mapping[k] = v
178
  new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
179
  weights_to_convert = ["q", "k", "v", "proj_out"]
180
+ print("Converting to CKPT ...")
181
  for k, v in new_state_dict.items():
182
  for weight_name in weights_to_convert:
183
  if f"mid.attn_1.{weight_name}.weight" in k:
184
+ print(f"Reshaping {k} for SD format")
185
  new_state_dict[k] = reshape_weight_for_sd(v)
186
  return new_state_dict
187
 
 
189
  # =========================#
190
  # Text Encoder Conversion #
191
  # =========================#
192
+
193
+
194
+ textenc_conversion_lst = [
195
+ # (stable-diffusion, HF Diffusers)
196
+ ("resblocks.", "text_model.encoder.layers."),
197
+ ("ln_1", "layer_norm1"),
198
+ ("ln_2", "layer_norm2"),
199
+ (".c_fc.", ".fc1."),
200
+ (".c_proj.", ".fc2."),
201
+ (".attn", ".self_attn"),
202
+ ("ln_final.", "transformer.text_model.final_layer_norm."),
203
+ ("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
204
+ ("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
205
+ ]
206
+ protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
207
+ textenc_pattern = re.compile("|".join(protected.keys()))
208
+
209
+ # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
210
+ code2idx = {"q": 0, "k": 1, "v": 2}
211
+
212
+
213
+ def convert_text_enc_state_dict_v20(text_enc_dict):
214
+ new_state_dict = {}
215
+ capture_qkv_weight = {}
216
+ capture_qkv_bias = {}
217
+ for k, v in text_enc_dict.items():
218
+ if (
219
+ k.endswith(".self_attn.q_proj.weight")
220
+ or k.endswith(".self_attn.k_proj.weight")
221
+ or k.endswith(".self_attn.v_proj.weight")
222
+ ):
223
+ k_pre = k[: -len(".q_proj.weight")]
224
+ k_code = k[-len("q_proj.weight")]
225
+ if k_pre not in capture_qkv_weight:
226
+ capture_qkv_weight[k_pre] = [None, None, None]
227
+ capture_qkv_weight[k_pre][code2idx[k_code]] = v
228
+ continue
229
+
230
+ if (
231
+ k.endswith(".self_attn.q_proj.bias")
232
+ or k.endswith(".self_attn.k_proj.bias")
233
+ or k.endswith(".self_attn.v_proj.bias")
234
+ ):
235
+ k_pre = k[: -len(".q_proj.bias")]
236
+ k_code = k[-len("q_proj.bias")]
237
+ if k_pre not in capture_qkv_bias:
238
+ capture_qkv_bias[k_pre] = [None, None, None]
239
+ capture_qkv_bias[k_pre][code2idx[k_code]] = v
240
+ continue
241
+
242
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
243
+ new_state_dict[relabelled_key] = v
244
+
245
+ for k_pre, tensors in capture_qkv_weight.items():
246
+ if None in tensors:
247
+ raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
248
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
249
+ new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
250
+
251
+ for k_pre, tensors in capture_qkv_bias.items():
252
+ if None in tensors:
253
+ raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
254
+ relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
255
+ new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
256
+
257
+ return new_state_dict
258
 
259
 
260
  def convert_text_enc_state_dict(text_enc_dict):
 
267
  text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
268
 
269
  # Convert the UNet model
270
+ unet_state_dict = torch.load(unet_path, map_location="cpu")
271
  unet_state_dict = convert_unet_state_dict(unet_state_dict)
272
  unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
273
 
274
  # Convert the VAE model
275
+ vae_state_dict = torch.load(vae_path, map_location="cpu")
276
  vae_state_dict = convert_vae_state_dict(vae_state_dict)
277
  vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
278
 
279
  # Convert the text encoder model
280
+ text_enc_dict = torch.load(text_enc_path, map_location="cpu")
281
+
282
+ # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
283
+ is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
284
+
285
+ if is_v20_model:
286
+ # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
287
+ text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
288
+ text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
289
+ text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
290
+ else:
291
+ text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
292
+ text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
293
 
294
  # Put together new checkpoint
295
  state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
296
+ state_dict = {k: v.half() for k, v in state_dict.items()}
 
297
  state_dict = {"state_dict": state_dict}
298
  torch.save(state_dict, checkpoint_path)
299
  del state_dict, text_enc_dict, vae_state_dict, unet_state_dict
300
  torch.cuda.empty_cache()
301
  gc.collect()
302
+
convertosd_ld.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
2
+ # *Only* converts the UNet, VAE, and Text Encoder.
3
+ # Does not convert optimizer state or any other thing.
4
+ # Written by jachiam
5
+
6
+ import argparse
7
+ import os.path as osp
8
+
9
+ import torch
10
+ import gc
11
+
12
+ # =================#
13
+ # UNet Conversion #
14
+ # =================#
15
+
16
+ unet_conversion_map = [
17
+ # (stable-diffusion, HF Diffusers)
18
+ ("time_embed.0.weight", "time_embedding.linear_1.weight"),
19
+ ("time_embed.0.bias", "time_embedding.linear_1.bias"),
20
+ ("time_embed.2.weight", "time_embedding.linear_2.weight"),
21
+ ("time_embed.2.bias", "time_embedding.linear_2.bias"),
22
+ ("input_blocks.0.0.weight", "conv_in.weight"),
23
+ ("input_blocks.0.0.bias", "conv_in.bias"),
24
+ ("out.0.weight", "conv_norm_out.weight"),
25
+ ("out.0.bias", "conv_norm_out.bias"),
26
+ ("out.2.weight", "conv_out.weight"),
27
+ ("out.2.bias", "conv_out.bias"),
28
+ ]
29
+
30
+ unet_conversion_map_resnet = [
31
+ # (stable-diffusion, HF Diffusers)
32
+ ("in_layers.0", "norm1"),
33
+ ("in_layers.2", "conv1"),
34
+ ("out_layers.0", "norm2"),
35
+ ("out_layers.3", "conv2"),
36
+ ("emb_layers.1", "time_emb_proj"),
37
+ ("skip_connection", "conv_shortcut"),
38
+ ]
39
+
40
+ unet_conversion_map_layer = []
41
+ # hardcoded number of downblocks and resnets/attentions...
42
+ # would need smarter logic for other networks.
43
+ for i in range(4):
44
+ # loop over downblocks/upblocks
45
+
46
+ for j in range(2):
47
+ # loop over resnets/attentions for downblocks
48
+ hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
49
+ sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
50
+ unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
51
+
52
+ if i < 3:
53
+ # no attention layers in down_blocks.3
54
+ hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
55
+ sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
56
+ unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
57
+
58
+ for j in range(3):
59
+ # loop over resnets/attentions for upblocks
60
+ hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
61
+ sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
62
+ unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
63
+
64
+ if i > 0:
65
+ # no attention layers in up_blocks.0
66
+ hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
67
+ sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
68
+ unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
69
+
70
+ if i < 3:
71
+ # no downsample in down_blocks.3
72
+ hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
73
+ sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
74
+ unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
75
+
76
+ # no upsample in up_blocks.3
77
+ hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
78
+ sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
79
+ unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
80
+
81
+ hf_mid_atn_prefix = "mid_block.attentions.0."
82
+ sd_mid_atn_prefix = "middle_block.1."
83
+ unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
84
+
85
+ for j in range(2):
86
+ hf_mid_res_prefix = f"mid_block.resnets.{j}."
87
+ sd_mid_res_prefix = f"middle_block.{2*j}."
88
+ unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
89
+
90
+
91
+ def convert_unet_state_dict(unet_state_dict):
92
+ # buyer beware: this is a *brittle* function,
93
+ # and correct output requires that all of these pieces interact in
94
+ # the exact order in which I have arranged them.
95
+ mapping = {k: k for k in unet_state_dict.keys()}
96
+ for sd_name, hf_name in unet_conversion_map:
97
+ mapping[hf_name] = sd_name
98
+ for k, v in mapping.items():
99
+ if "resnets" in k:
100
+ for sd_part, hf_part in unet_conversion_map_resnet:
101
+ v = v.replace(hf_part, sd_part)
102
+ mapping[k] = v
103
+ for k, v in mapping.items():
104
+ for sd_part, hf_part in unet_conversion_map_layer:
105
+ v = v.replace(hf_part, sd_part)
106
+ mapping[k] = v
107
+ new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
108
+ return new_state_dict
109
+
110
+
111
+ # ================#
112
+ # VAE Conversion #
113
+ # ================#
114
+
115
+ vae_conversion_map = [
116
+ # (stable-diffusion, HF Diffusers)
117
+ ("nin_shortcut", "conv_shortcut"),
118
+ ("norm_out", "conv_norm_out"),
119
+ ("mid.attn_1.", "mid_block.attentions.0."),
120
+ ]
121
+
122
+ for i in range(4):
123
+ # down_blocks have two resnets
124
+ for j in range(2):
125
+ hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
126
+ sd_down_prefix = f"encoder.down.{i}.block.{j}."
127
+ vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
128
+
129
+ if i < 3:
130
+ hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
131
+ sd_downsample_prefix = f"down.{i}.downsample."
132
+ vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
133
+
134
+ hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
135
+ sd_upsample_prefix = f"up.{3-i}.upsample."
136
+ vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
137
+
138
+ # up_blocks have three resnets
139
+ # also, up blocks in hf are numbered in reverse from sd
140
+ for j in range(3):
141
+ hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
142
+ sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
143
+ vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
144
+
145
+ # this part accounts for mid blocks in both the encoder and the decoder
146
+ for i in range(2):
147
+ hf_mid_res_prefix = f"mid_block.resnets.{i}."
148
+ sd_mid_res_prefix = f"mid.block_{i+1}."
149
+ vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
150
+
151
+
152
+ vae_conversion_map_attn = [
153
+ # (stable-diffusion, HF Diffusers)
154
+ ("norm.", "group_norm."),
155
+ ("q.", "query."),
156
+ ("k.", "key."),
157
+ ("v.", "value."),
158
+ ("proj_out.", "proj_attn."),
159
+ ]
160
+
161
+
162
+ def reshape_weight_for_sd(w):
163
+ # convert HF linear weights to SD conv2d weights
164
+ return w.reshape(*w.shape, 1, 1)
165
+
166
+
167
+ def convert_vae_state_dict(vae_state_dict):
168
+ mapping = {k: k for k in vae_state_dict.keys()}
169
+ for k, v in mapping.items():
170
+ for sd_part, hf_part in vae_conversion_map:
171
+ v = v.replace(hf_part, sd_part)
172
+ mapping[k] = v
173
+ for k, v in mapping.items():
174
+ if "attentions" in k:
175
+ for sd_part, hf_part in vae_conversion_map_attn:
176
+ v = v.replace(hf_part, sd_part)
177
+ mapping[k] = v
178
+ new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
179
+ weights_to_convert = ["q", "k", "v", "proj_out"]
180
+ print("Converting to CKPT ...")
181
+ for k, v in new_state_dict.items():
182
+ for weight_name in weights_to_convert:
183
+ if f"mid.attn_1.{weight_name}.weight" in k:
184
+ new_state_dict[k] = reshape_weight_for_sd(v)
185
+ return new_state_dict
186
+
187
+
188
+ # =========================#
189
+ # Text Encoder Conversion #
190
+ # =========================#
191
+ # pretty much a no-op
192
+
193
+
194
+ def convert_text_enc_state_dict(text_enc_dict):
195
+ return text_enc_dict
196
+
197
+
198
+ def convert(model_path, checkpoint_path):
199
+ unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
200
+ vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
201
+ text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
202
+
203
+ # Convert the UNet model
204
+ unet_state_dict = torch.load(unet_path, map_location='cpu')
205
+ unet_state_dict = convert_unet_state_dict(unet_state_dict)
206
+ unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
207
+
208
+ # Convert the VAE model
209
+ vae_state_dict = torch.load(vae_path, map_location='cpu')
210
+ vae_state_dict = convert_vae_state_dict(vae_state_dict)
211
+ vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
212
+
213
+ # Convert the text encoder model
214
+ text_enc_dict = torch.load(text_enc_path, map_location='cpu')
215
+ text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
216
+ text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
217
+
218
+ # Put together new checkpoint
219
+ state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
220
+
221
+ state_dict = {k:v.half() for k,v in state_dict.items()}
222
+ state_dict = {"state_dict": state_dict}
223
+ torch.save(state_dict, checkpoint_path)
224
+ del state_dict, text_enc_dict, vae_state_dict, unet_state_dict
225
+ torch.cuda.empty_cache()
226
+ gc.collect()