mattb512 commited on
Commit
8a73c52
1 Parent(s): 43353bb

check model is on device

Browse files
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -10,6 +10,14 @@ import time
10
  feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
11
  model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
12
 
 
 
 
 
 
 
 
 
13
  # https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb
14
 
15
  def cityscapes_palette():
@@ -53,23 +61,23 @@ def annotation(image:ImageDraw, color_seg:np.array):
53
  def call(image): #nparray
54
  start = time.time()
55
 
56
- print(f"Is CUDA available: {torch.cuda.is_available()}")
57
- if (torch.cuda.is_available()):
58
- print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
59
-
60
  resized = Image.fromarray(image).resize((1024,1024))
61
  resized_image = np.array(resized)
62
  print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3
63
 
 
64
  # resized_image = Image.fromarray(resized_image_np)
65
  # print(f"{resized_image=}")
66
 
67
  inputs = feature_extractor(images=resized_image, return_tensors="pt")
68
 
 
 
69
  outputs = model(**inputs)
70
  print(f"{outputs.logits.shape=}") # shape (batch_size, num_labels, height/4, width/4) -> 3, 19, 256 ,256
71
  # print(f"{logits}")
72
 
 
73
  # First, rescale logits to original image size
74
  interpolated_logits = nn.functional.interpolate(
75
  outputs.logits,
@@ -91,6 +99,8 @@ def call(image): #nparray
91
  color_seg = color_seg[..., ::-1]
92
  print(f"{color_seg.shape=}")
93
 
 
 
94
  # Show image + mask
95
  img = np.array(resized_image) * 0.5 + color_seg * 0.5
96
  img = img.astype(np.uint8)
@@ -98,8 +108,7 @@ def call(image): #nparray
98
  out_im_file = Image.fromarray(img)
99
  annotation(out_im_file, color_seg)
100
 
101
- end = time.time()
102
- print(f"processing time: {(end - start):.2f} s")
103
 
104
  return out_im_file
105
 
 
10
  feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
11
  model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
12
 
13
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
14
+
15
+ print(f"Is CUDA available: {torch.cuda.is_available()} --> {device=}")
16
+ if (torch.cuda.is_available()):
17
+ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
18
+
19
+ model.to(device)
20
+
21
  # https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb
22
 
23
  def cityscapes_palette():
 
61
  def call(image): #nparray
62
  start = time.time()
63
 
 
 
 
 
64
  resized = Image.fromarray(image).resize((1024,1024))
65
  resized_image = np.array(resized)
66
  print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3
67
 
68
+ print(f"*processing time: {(time.time() - start):.2f} s")
69
  # resized_image = Image.fromarray(resized_image_np)
70
  # print(f"{resized_image=}")
71
 
72
  inputs = feature_extractor(images=resized_image, return_tensors="pt")
73
 
74
+ print(f"**processing time: {(time.time() - start):.2f} s")
75
+
76
  outputs = model(**inputs)
77
  print(f"{outputs.logits.shape=}") # shape (batch_size, num_labels, height/4, width/4) -> 3, 19, 256 ,256
78
  # print(f"{logits}")
79
 
80
+ print(f"***processing time: {(time.time() - start):.2f} s")
81
  # First, rescale logits to original image size
82
  interpolated_logits = nn.functional.interpolate(
83
  outputs.logits,
 
99
  color_seg = color_seg[..., ::-1]
100
  print(f"{color_seg.shape=}")
101
 
102
+ print(f"****processing time: {(time.time() - start):.2f} s")
103
+
104
  # Show image + mask
105
  img = np.array(resized_image) * 0.5 + color_seg * 0.5
106
  img = img.astype(np.uint8)
 
108
  out_im_file = Image.fromarray(img)
109
  annotation(out_im_file, color_seg)
110
 
111
+ print(f"--> processing time: {(time.time() - start):.2f} s")
 
112
 
113
  return out_im_file
114