Spaces:
Sleeping
Sleeping
check model is on device
Browse files
app.py
CHANGED
@@ -10,6 +10,14 @@ import time
|
|
10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
11 |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb
|
14 |
|
15 |
def cityscapes_palette():
|
@@ -53,23 +61,23 @@ def annotation(image:ImageDraw, color_seg:np.array):
|
|
53 |
def call(image): #nparray
|
54 |
start = time.time()
|
55 |
|
56 |
-
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
57 |
-
if (torch.cuda.is_available()):
|
58 |
-
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
59 |
-
|
60 |
resized = Image.fromarray(image).resize((1024,1024))
|
61 |
resized_image = np.array(resized)
|
62 |
print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3
|
63 |
|
|
|
64 |
# resized_image = Image.fromarray(resized_image_np)
|
65 |
# print(f"{resized_image=}")
|
66 |
|
67 |
inputs = feature_extractor(images=resized_image, return_tensors="pt")
|
68 |
|
|
|
|
|
69 |
outputs = model(**inputs)
|
70 |
print(f"{outputs.logits.shape=}") # shape (batch_size, num_labels, height/4, width/4) -> 3, 19, 256 ,256
|
71 |
# print(f"{logits}")
|
72 |
|
|
|
73 |
# First, rescale logits to original image size
|
74 |
interpolated_logits = nn.functional.interpolate(
|
75 |
outputs.logits,
|
@@ -91,6 +99,8 @@ def call(image): #nparray
|
|
91 |
color_seg = color_seg[..., ::-1]
|
92 |
print(f"{color_seg.shape=}")
|
93 |
|
|
|
|
|
94 |
# Show image + mask
|
95 |
img = np.array(resized_image) * 0.5 + color_seg * 0.5
|
96 |
img = img.astype(np.uint8)
|
@@ -98,8 +108,7 @@ def call(image): #nparray
|
|
98 |
out_im_file = Image.fromarray(img)
|
99 |
annotation(out_im_file, color_seg)
|
100 |
|
101 |
-
|
102 |
-
print(f"processing time: {(end - start):.2f} s")
|
103 |
|
104 |
return out_im_file
|
105 |
|
|
|
10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
11 |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
12 |
|
13 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
+
|
15 |
+
print(f"Is CUDA available: {torch.cuda.is_available()} --> {device=}")
|
16 |
+
if (torch.cuda.is_available()):
|
17 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
18 |
+
|
19 |
+
model.to(device)
|
20 |
+
|
21 |
# https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb
|
22 |
|
23 |
def cityscapes_palette():
|
|
|
61 |
def call(image): #nparray
|
62 |
start = time.time()
|
63 |
|
|
|
|
|
|
|
|
|
64 |
resized = Image.fromarray(image).resize((1024,1024))
|
65 |
resized_image = np.array(resized)
|
66 |
print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3
|
67 |
|
68 |
+
print(f"*processing time: {(time.time() - start):.2f} s")
|
69 |
# resized_image = Image.fromarray(resized_image_np)
|
70 |
# print(f"{resized_image=}")
|
71 |
|
72 |
inputs = feature_extractor(images=resized_image, return_tensors="pt")
|
73 |
|
74 |
+
print(f"**processing time: {(time.time() - start):.2f} s")
|
75 |
+
|
76 |
outputs = model(**inputs)
|
77 |
print(f"{outputs.logits.shape=}") # shape (batch_size, num_labels, height/4, width/4) -> 3, 19, 256 ,256
|
78 |
# print(f"{logits}")
|
79 |
|
80 |
+
print(f"***processing time: {(time.time() - start):.2f} s")
|
81 |
# First, rescale logits to original image size
|
82 |
interpolated_logits = nn.functional.interpolate(
|
83 |
outputs.logits,
|
|
|
99 |
color_seg = color_seg[..., ::-1]
|
100 |
print(f"{color_seg.shape=}")
|
101 |
|
102 |
+
print(f"****processing time: {(time.time() - start):.2f} s")
|
103 |
+
|
104 |
# Show image + mask
|
105 |
img = np.array(resized_image) * 0.5 + color_seg * 0.5
|
106 |
img = img.astype(np.uint8)
|
|
|
108 |
out_im_file = Image.fromarray(img)
|
109 |
annotation(out_im_file, color_seg)
|
110 |
|
111 |
+
print(f"--> processing time: {(time.time() - start):.2f} s")
|
|
|
112 |
|
113 |
return out_im_file
|
114 |
|