Spaces:
Sleeping
Sleeping
print processing time
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from torch import nn
|
|
5 |
import gradio as gr
|
6 |
import os
|
7 |
import torch
|
|
|
8 |
|
9 |
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
10 |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
@@ -50,9 +51,11 @@ def annotation(image:ImageDraw, color_seg:np.array):
|
|
50 |
draw.rectangle([(x, y), (x + step_size, y + step_size)], outline="white", width=3)
|
51 |
|
52 |
def call(image): #nparray
|
|
|
53 |
|
54 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
55 |
-
|
|
|
56 |
|
57 |
resized = Image.fromarray(image).resize((1024,1024))
|
58 |
resized_image = np.array(resized)
|
@@ -95,6 +98,9 @@ def call(image): #nparray
|
|
95 |
out_im_file = Image.fromarray(img)
|
96 |
annotation(out_im_file, color_seg)
|
97 |
|
|
|
|
|
|
|
98 |
return out_im_file
|
99 |
|
100 |
# original_image = Image.open("./examples/1.jpg")
|
|
|
5 |
import gradio as gr
|
6 |
import os
|
7 |
import torch
|
8 |
+
import time
|
9 |
|
10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
11 |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
|
|
51 |
draw.rectangle([(x, y), (x + step_size, y + step_size)], outline="white", width=3)
|
52 |
|
53 |
def call(image): #nparray
|
54 |
+
start = time.time()
|
55 |
|
56 |
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
57 |
+
if (torch.cuda.is_available()):
|
58 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
59 |
|
60 |
resized = Image.fromarray(image).resize((1024,1024))
|
61 |
resized_image = np.array(resized)
|
|
|
98 |
out_im_file = Image.fromarray(img)
|
99 |
annotation(out_im_file, color_seg)
|
100 |
|
101 |
+
end = time.time()
|
102 |
+
print(f"processing time: {(end - start):.2f} s")
|
103 |
+
|
104 |
return out_im_file
|
105 |
|
106 |
# original_image = Image.open("./examples/1.jpg")
|