Spaces:
Sleeping
Sleeping
check for gpu
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import numpy as np
|
|
4 |
from torch import nn
|
5 |
import gradio as gr
|
6 |
import os
|
|
|
7 |
|
8 |
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
9 |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
@@ -50,6 +51,9 @@ def annotation(image:ImageDraw, color_seg:np.array):
|
|
50 |
|
51 |
def call(image): #nparray
|
52 |
|
|
|
|
|
|
|
53 |
resized = Image.fromarray(image).resize((1024,1024))
|
54 |
resized_image = np.array(resized)
|
55 |
print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3
|
|
|
4 |
from torch import nn
|
5 |
import gradio as gr
|
6 |
import os
|
7 |
+
import torch
|
8 |
|
9 |
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
10 |
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
|
|
51 |
|
52 |
def call(image): #nparray
|
53 |
|
54 |
+
print(f"Is CUDA available: {torch.cuda.is_available()}")
|
55 |
+
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
56 |
+
|
57 |
resized = Image.fromarray(image).resize((1024,1024))
|
58 |
resized_image = np.array(resized)
|
59 |
print(f"{np.array(resized_image).shape=}") # 1024, 1024, 3
|