Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The IDEA Authors. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn as nn | |
from .attention import MultiheadAttention | |
class OriginalConditionalAttentionEncoder(nn.Module): | |
"""Original implementation of Conditional Self-Attention | |
Remove norm and dropout layer for test simplicity | |
""" | |
def __init__(self, d_model, nhead): | |
super().__init__() | |
self.sa_qcontent_proj = nn.Linear(d_model, d_model) | |
self.sa_qpos_proj = nn.Linear(d_model, d_model) | |
self.sa_kcontent_proj = nn.Linear(d_model, d_model) | |
self.sa_kpos_proj = nn.Linear(d_model, d_model) | |
self.sa_v_proj = nn.Linear(d_model, d_model) | |
self.self_attn = MultiheadAttention(d_model, nhead, dropout=0.0, vdim=d_model) | |
def forward(self, tgt, query_pos): | |
q_content = self.sa_qcontent_proj(tgt) | |
q_pos = self.sa_qpos_proj(query_pos) | |
k_content = self.sa_kcontent_proj(tgt) | |
k_pos = self.sa_kpos_proj(query_pos) | |
v = self.sa_v_proj(tgt) | |
q = q_content + q_pos | |
k = k_content + k_pos | |
tgt2 = self.self_attn(q, k, v) | |
return tgt2 | |
class OriginalConditionalAttentionDecoder(nn.Module): | |
"""Original implementation of Conditional Attention Decoder | |
Remove norm and dropout layer for test simplicity | |
""" | |
def __init__(self, d_model, nhead): | |
super().__init__() | |
# self-attn | |
self.sa_qcontent_proj = nn.Linear(d_model, d_model) | |
self.sa_qpos_proj = nn.Linear(d_model, d_model) | |
self.sa_kcontent_proj = nn.Linear(d_model, d_model) | |
self.sa_kpos_proj = nn.Linear(d_model, d_model) | |
self.sa_v_proj = nn.Linear(d_model, d_model) | |
self.self_attn = MultiheadAttention(d_model, nhead, dropout=0.0, vdim=d_model) | |
# cross-attn | |
self.ca_qcontent_proj = nn.Linear(d_model, d_model) | |
self.ca_qpos_proj = nn.Linear(d_model, d_model) | |
self.ca_kcontent_proj = nn.Linear(d_model, d_model) | |
self.ca_kpos_proj = nn.Linear(d_model, d_model) | |
self.ca_v_proj = nn.Linear(d_model, d_model) | |
self.ca_qpos_sine_proj = nn.Linear(d_model, d_model) | |
self.cross_attn = MultiheadAttention(d_model * 2, nhead, dropout=0.0, vdim=d_model) | |
self.nhead = nhead | |
def forward(self, tgt, memory, query_pos, pos, query_sine_embed, is_first=True): | |
# self attention | |
q_content = self.sa_qcontent_proj( | |
tgt | |
) # target is the input of the first decoder layer. zero by default. | |
q_pos = self.sa_qpos_proj(query_pos) | |
k_content = self.sa_kcontent_proj(tgt) | |
k_pos = self.sa_kpos_proj(query_pos) | |
v = self.sa_v_proj(tgt) | |
q = q_content + q_pos | |
k = k_content + k_pos | |
tgt2 = self.self_attn(q, k, v)[0] | |
tgt = tgt + tgt2 | |
# ======================================== | |
# cross attention | |
q_content = self.ca_qcontent_proj(tgt) | |
k_content = self.ca_kcontent_proj(memory) | |
v = self.ca_v_proj(memory) | |
num_queries, bs, n_model = q_content.shape | |
hw, _, _ = k_content.shape | |
k_pos = self.ca_kpos_proj(pos) | |
# For the first decoder layer, we concatenate the positional embedding predicted from | |
# the object query (the positional embedding) into the original query (key) in DETR. | |
if is_first: | |
q_pos = self.ca_qpos_proj(query_pos) | |
q = q_content + q_pos | |
k = k_content + k_pos | |
else: | |
q = q_content | |
k = k_content | |
q = q.view(num_queries, bs, self.nhead, n_model // self.nhead) | |
query_sine_embed = self.ca_qpos_sine_proj(query_sine_embed) | |
query_sine_embed = query_sine_embed.view(num_queries, bs, self.nhead, n_model // self.nhead) | |
q = torch.cat([q, query_sine_embed], dim=3).view(num_queries, bs, n_model * 2) | |
k = k.view(hw, bs, self.nhead, n_model // self.nhead) | |
k_pos = k_pos.view(hw, bs, self.nhead, n_model // self.nhead) | |
k = torch.cat([k, k_pos], dim=3).view(hw, bs, n_model * 2) | |
tgt2 = self.cross_attn(query=q, key=k, value=v)[0] | |
return tgt2 + tgt | |