# coding=utf-8 # Copyright 2022 The IDEA Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn from .attention import MultiheadAttention class OriginalConditionalAttentionEncoder(nn.Module): """Original implementation of Conditional Self-Attention Remove norm and dropout layer for test simplicity """ def __init__(self, d_model, nhead): super().__init__() self.sa_qcontent_proj = nn.Linear(d_model, d_model) self.sa_qpos_proj = nn.Linear(d_model, d_model) self.sa_kcontent_proj = nn.Linear(d_model, d_model) self.sa_kpos_proj = nn.Linear(d_model, d_model) self.sa_v_proj = nn.Linear(d_model, d_model) self.self_attn = MultiheadAttention(d_model, nhead, dropout=0.0, vdim=d_model) def forward(self, tgt, query_pos): q_content = self.sa_qcontent_proj(tgt) q_pos = self.sa_qpos_proj(query_pos) k_content = self.sa_kcontent_proj(tgt) k_pos = self.sa_kpos_proj(query_pos) v = self.sa_v_proj(tgt) q = q_content + q_pos k = k_content + k_pos tgt2 = self.self_attn(q, k, v) return tgt2 class OriginalConditionalAttentionDecoder(nn.Module): """Original implementation of Conditional Attention Decoder Remove norm and dropout layer for test simplicity """ def __init__(self, d_model, nhead): super().__init__() # self-attn self.sa_qcontent_proj = nn.Linear(d_model, d_model) self.sa_qpos_proj = nn.Linear(d_model, d_model) self.sa_kcontent_proj = nn.Linear(d_model, d_model) self.sa_kpos_proj = nn.Linear(d_model, d_model) self.sa_v_proj = nn.Linear(d_model, d_model) self.self_attn = MultiheadAttention(d_model, nhead, dropout=0.0, vdim=d_model) # cross-attn self.ca_qcontent_proj = nn.Linear(d_model, d_model) self.ca_qpos_proj = nn.Linear(d_model, d_model) self.ca_kcontent_proj = nn.Linear(d_model, d_model) self.ca_kpos_proj = nn.Linear(d_model, d_model) self.ca_v_proj = nn.Linear(d_model, d_model) self.ca_qpos_sine_proj = nn.Linear(d_model, d_model) self.cross_attn = MultiheadAttention(d_model * 2, nhead, dropout=0.0, vdim=d_model) self.nhead = nhead def forward(self, tgt, memory, query_pos, pos, query_sine_embed, is_first=True): # self attention q_content = self.sa_qcontent_proj( tgt ) # target is the input of the first decoder layer. zero by default. q_pos = self.sa_qpos_proj(query_pos) k_content = self.sa_kcontent_proj(tgt) k_pos = self.sa_kpos_proj(query_pos) v = self.sa_v_proj(tgt) q = q_content + q_pos k = k_content + k_pos tgt2 = self.self_attn(q, k, v)[0] tgt = tgt + tgt2 # ======================================== # cross attention q_content = self.ca_qcontent_proj(tgt) k_content = self.ca_kcontent_proj(memory) v = self.ca_v_proj(memory) num_queries, bs, n_model = q_content.shape hw, _, _ = k_content.shape k_pos = self.ca_kpos_proj(pos) # For the first decoder layer, we concatenate the positional embedding predicted from # the object query (the positional embedding) into the original query (key) in DETR. if is_first: q_pos = self.ca_qpos_proj(query_pos) q = q_content + q_pos k = k_content + k_pos else: q = q_content k = k_content q = q.view(num_queries, bs, self.nhead, n_model // self.nhead) query_sine_embed = self.ca_qpos_sine_proj(query_sine_embed) query_sine_embed = query_sine_embed.view(num_queries, bs, self.nhead, n_model // self.nhead) q = torch.cat([q, query_sine_embed], dim=3).view(num_queries, bs, n_model * 2) k = k.view(hw, bs, self.nhead, n_model // self.nhead) k_pos = k_pos.view(hw, bs, self.nhead, n_model // self.nhead) k = torch.cat([k, k_pos], dim=3).view(hw, bs, n_model * 2) tgt2 = self.cross_attn(query=q, key=k, value=v)[0] return tgt2 + tgt