Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The IDEA Authors. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------------------------------ | |
# Copyright (c) OpenMMLab. All rights reserved. | |
# ------------------------------------------------------------------------------------------------ | |
# Modified from: | |
# https://github.com/open-mmlab/mmdetection/blob/master/tests/test_models/test_utils/test_position_encoding.py | |
# ------------------------------------------------------------------------------------------------ | |
import pytest | |
import torch | |
from detrex.layers import PositionEmbeddingLearned, PositionEmbeddingSine | |
from utils import ( | |
DABPositionEmbeddingLearned, | |
DABPositionEmbeddingSine, | |
DeformablePositionEmbeddingSine, | |
) | |
def test_sine_position_embedding(num_pos_feats=16, batch_size=2): | |
# test invalid type of scale | |
with pytest.raises(AssertionError): | |
module = PositionEmbeddingSine(num_pos_feats, scale=(3.0,), normalize=True) | |
module = PositionEmbeddingSine(num_pos_feats) | |
h, w = 10, 6 | |
mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int) | |
assert not module.normalize | |
out = module(mask) | |
assert out.shape == (batch_size, num_pos_feats * 2, h, w) | |
# set normalize | |
module = PositionEmbeddingSine(num_pos_feats, normalize=True) | |
assert module.normalize | |
out = module(mask) | |
assert out.shape == (batch_size, num_pos_feats * 2, h, w) | |
def test_learned_position_embedding( | |
num_pos_feats=16, row_num_embed=10, col_num_embed=10, batch_size=2 | |
): | |
module = PositionEmbeddingLearned(num_pos_feats, row_num_embed, col_num_embed) | |
assert module.row_embed.weight.shape == (row_num_embed, num_pos_feats) | |
assert module.col_embed.weight.shape == (col_num_embed, num_pos_feats) | |
h, w = 10, 6 | |
mask = torch.rand(batch_size, h, w) > 0.5 | |
out = module(mask) | |
assert out.shape == (batch_size, num_pos_feats * 2, h, w) | |
def test_sine_position_embedding_output(num_pos_feats=16, batch_size=2): | |
# test position embedding without normalize | |
module_new = PositionEmbeddingSine(num_pos_feats) | |
module_original = DABPositionEmbeddingSine(num_pos_feats) | |
h, w = 10, 6 | |
mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int) | |
output_new = module_new(mask) | |
output_original = module_original(mask) | |
torch.allclose(output_new.sum(), output_original.sum()) | |
# test position embedding with normalize | |
module_new = PositionEmbeddingSine(num_pos_feats, normalize=True) | |
module_original = DABPositionEmbeddingSine(num_pos_feats, normalize=True) | |
h, w = 10, 6 | |
mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int) | |
output_new = module_new(mask) | |
output_original = module_original(mask) | |
torch.allclose(output_new.sum(), output_original.sum()) | |
def test_sine_position_embedding_deformable(num_pos_feats=16, batch_size=2): | |
# test position embedding used in Deformable-DETR without normalize | |
# test position embedding without normalize | |
module_new = PositionEmbeddingSine(num_pos_feats, offset=-0.5) | |
module_original = DeformablePositionEmbeddingSine(num_pos_feats) | |
h, w = 10, 6 | |
mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int) | |
output_new = module_new(mask) | |
output_original = module_original(mask) | |
torch.allclose(output_new.sum(), output_original.sum()) | |
# test position embedding with normalize | |
module_new = PositionEmbeddingSine(num_pos_feats, offset=-0.5, normalize=True) | |
module_original = DeformablePositionEmbeddingSine(num_pos_feats, normalize=True) | |
h, w = 10, 6 | |
mask = (torch.rand(batch_size, h, w) > 0.5).to(torch.int) | |
output_new = module_new(mask) | |
output_original = module_original(mask) | |
torch.allclose(output_new.sum(), output_original.sum()) | |
def test_learned_position_embedding_output( | |
num_pos_feats=16, row_num_embed=10, col_num_embed=10, batch_size=2 | |
): | |
module_new = PositionEmbeddingLearned(num_pos_feats, row_num_embed, col_num_embed) | |
module_original = DABPositionEmbeddingLearned(num_pos_feats) | |
# transfer weights | |
module_new.col_embed.weight = module_original.col_embed.weight | |
module_new.row_embed.weight = module_original.row_embed.weight | |
h, w = 10, 6 | |
mask = torch.rand(batch_size, h, w) > 0.5 | |
output_new = module_new(mask) | |
output_original = module_original(mask) | |
torch.allclose(output_new.sum(), output_original.sum()) | |