Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The IDEA Authors. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------------------------------ | |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
# ------------------------------------------------------------------------------------------------ | |
# Modified from: | |
# https://github.com/facebookresearch/detr/blob/main/d2/detr/detr.py | |
# ------------------------------------------------------------------------------------------------ | |
from typing import List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from detrex.layers.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh | |
from detrex.layers.mlp import MLP | |
from detectron2.modeling import detector_postprocess | |
from detectron2.structures import Boxes, ImageList, Instances | |
class DETR(nn.Module): | |
"""Implement DETR in `End-to-End Object Detection with Transformers | |
<https://arxiv.org/abs/2005.12872>`_ | |
Args: | |
backbone (nn.Module): Backbone module for feature extraction. | |
in_features (List[str]): Selected backbone output features for transformer module. | |
in_channels (int): Dimension of the last feature in `in_features`. | |
position_embedding (nn.Module): Position encoding layer for generating position embeddings. | |
transformer (nn.Module): Transformer module used for further processing features | |
and input queries. | |
embed_dim (int): Hidden dimension for transformer module. | |
num_classes (int): Number of total categories. | |
num_queries (int): Number of proposal dynamic anchor boxes in Transformer | |
criterion (nn.Module): Criterion for calculating the total losses. | |
aux_loss (bool): Whether to calculate auxiliary loss in criterion. Default: True. | |
pixel_mean (List[float]): Pixel mean value for image normalization. | |
Default: [123.675, 116.280, 103.530]. | |
pixel_std (List[float]): Pixel std value for image normalization. | |
Default: [58.395, 57.120, 57.375]. | |
device (str): Training device. Default: "cuda". | |
""" | |
def __init__( | |
self, | |
backbone: nn.Module, | |
in_features: List[str], | |
in_channels: int, | |
position_embedding: nn.Module, | |
transformer: nn.Module, | |
embed_dim: int, | |
num_classes: int, | |
num_queries: int, | |
criterion: nn.Module, | |
aux_loss: bool = True, | |
pixel_mean: List[float] = [123.675, 116.280, 103.530], | |
pixel_std: List[float] = [58.395, 57.120, 57.375], | |
device: str = "cuda", | |
): | |
super().__init__() | |
# define backbone and position embedding module | |
self.backbone = backbone | |
self.in_features = in_features | |
self.position_embedding = position_embedding | |
# project the backbone output feature | |
# into the required dim for transformer block | |
self.input_proj = nn.Conv2d(in_channels, embed_dim, kernel_size=1) | |
# define learnable object queries and transformer module | |
self.transformer = transformer | |
self.query_embed = nn.Embedding(num_queries, embed_dim) | |
# define classification head and box head | |
self.class_embed = nn.Linear(embed_dim, num_classes + 1) | |
self.bbox_embed = MLP(input_dim=embed_dim, hidden_dim=embed_dim, output_dim=4, num_layers=3) | |
self.num_classes = num_classes | |
# where to calculate auxiliary loss in criterion | |
self.aux_loss = aux_loss | |
self.criterion = criterion | |
# normalizer for input raw images | |
self.device = device | |
pixel_mean = torch.Tensor(pixel_mean).to(self.device).view(3, 1, 1) | |
pixel_std = torch.Tensor(pixel_std).to(self.device).view(3, 1, 1) | |
self.normalizer = lambda x: (x - pixel_mean) / pixel_std | |
def forward(self, batched_inputs): | |
"""Forward function of `DAB-DETR` which excepts a list of dict as inputs. | |
Args: | |
batched_inputs (List[dict]): A list of instance dict, and each dict must consists of: | |
- dict["image"] (torch.Tensor): The unnormalized image tensor. | |
- dict["height"] (int): The original image height. | |
- dict["width"] (int): The original image width. | |
- dict["instance"] (detectron2.structures.Instances): | |
Image meta informations and ground truth boxes and labels during training. | |
Please refer to | |
https://detectron2.readthedocs.io/en/latest/modules/structures.html#detectron2.structures.Instances | |
for the basic usage of Instances. | |
Returns: | |
dict: Returns a dict with the following elements: | |
- dict["pred_logits"]: the classification logits for all queries. | |
with shape ``[batch_size, num_queries, num_classes]`` | |
- dict["pred_boxes"]: The normalized boxes coordinates for all queries in format | |
``(x, y, w, h)``. These values are normalized in [0, 1] relative to the size of | |
each individual image (disregarding possible padding). See PostProcess for information | |
on how to retrieve the unnormalized bounding box. | |
- dict["aux_outputs"]: Optional, only returned when auxilary losses are activated. It is a list of | |
dictionnaries containing the two above keys for each decoder layer. | |
""" | |
images = self.preprocess_image(batched_inputs) | |
if self.training: | |
batch_size, _, H, W = images.tensor.shape | |
img_masks = images.tensor.new_ones(batch_size, H, W) | |
for img_id in range(batch_size): | |
img_h, img_w = batched_inputs[img_id]["instances"].image_size | |
img_masks[img_id, :img_h, :img_w] = 0 | |
else: | |
batch_size, _, H, W = images.tensor.shape | |
img_masks = images.tensor.new_zeros(batch_size, H, W) | |
# only use last level feature in DETR | |
features = self.backbone(images.tensor)[self.in_features[-1]] | |
features = self.input_proj(features) | |
img_masks = F.interpolate(img_masks[None], size=features.shape[-2:]).to(torch.bool)[0] | |
pos_embed = self.position_embedding(img_masks) | |
hidden_states, _ = self.transformer(features, img_masks, self.query_embed.weight, pos_embed) | |
outputs_class = self.class_embed(hidden_states) | |
outputs_coord = self.bbox_embed(hidden_states).sigmoid() | |
output = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]} | |
if self.aux_loss: | |
output["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord) | |
if self.training: | |
gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
targets = self.prepare_targets(gt_instances) | |
loss_dict = self.criterion(output, targets) | |
weight_dict = self.criterion.weight_dict | |
for k in loss_dict.keys(): | |
if k in weight_dict: | |
loss_dict[k] *= weight_dict[k] | |
return loss_dict | |
else: | |
box_cls = output["pred_logits"] | |
box_pred = output["pred_boxes"] | |
results = self.inference(box_cls, box_pred, images.image_sizes) | |
processed_results = [] | |
for results_per_image, input_per_image, image_size in zip( | |
results, batched_inputs, images.image_sizes | |
): | |
height = input_per_image.get("height", image_size[0]) | |
width = input_per_image.get("width", image_size[1]) | |
r = detector_postprocess(results_per_image, height, width) | |
processed_results.append({"instances": r}) | |
return processed_results | |
def _set_aux_loss(self, outputs_class, outputs_coord): | |
# this is a workaround to make torchscript happy, as torchscript | |
# doesn't support dictionary with non-homogeneous values, such | |
# as a dict having both a Tensor and a list. | |
return [ | |
{"pred_logits": a, "pred_boxes": b} | |
for a, b in zip(outputs_class[:-1], outputs_coord[:-1]) | |
] | |
def inference(self, box_cls, box_pred, image_sizes): | |
"""Inference function for DETR | |
Args: | |
box_cls (torch.Tensor): tensor of shape ``(batch_size, num_queries, K)``. | |
The tensor predicts the classification probability for each query. | |
box_pred (torch.Tensor): tensors of shape ``(batch_size, num_queries, 4)``. | |
The tensor predicts 4-vector ``(x, y, w, h)`` box | |
regression values for every queryx | |
image_sizes (List[torch.Size]): the input image sizes | |
Returns: | |
results (List[Instances]): a list of #images elements. | |
""" | |
assert len(box_cls) == len(image_sizes) | |
results = [] | |
# For each box we assign the best class or the second best if the best on is `no_object`. | |
scores, labels = F.softmax(box_cls, dim=-1)[:, :, :-1].max(-1) | |
for i, (scores_per_image, labels_per_image, box_pred_per_image, image_size) in enumerate( | |
zip(scores, labels, box_pred, image_sizes) | |
): | |
result = Instances(image_size) | |
result.pred_boxes = Boxes(box_cxcywh_to_xyxy(box_pred_per_image)) | |
result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0]) | |
result.scores = scores_per_image | |
result.pred_classes = labels_per_image | |
results.append(result) | |
return results | |
def prepare_targets(self, targets): | |
new_targets = [] | |
for targets_per_image in targets: | |
h, w = targets_per_image.image_size | |
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device) | |
gt_classes = targets_per_image.gt_classes | |
gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy | |
gt_boxes = box_xyxy_to_cxcywh(gt_boxes) | |
new_targets.append({"labels": gt_classes, "boxes": gt_boxes}) | |
return new_targets | |
def preprocess_image(self, batched_inputs): | |
images = [self.normalizer(x["image"].to(self.device)) for x in batched_inputs] | |
images = ImageList.from_tensors(images) | |
return images | |