odor-detection / projects /deta /modeling /deformable_detr.py
mathiaszinnen's picture
Initialize app
3e99b05
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from detrex.layers import MLP, box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
from detrex.utils import inverse_sigmoid
from detectron2.modeling import detector_postprocess
from detectron2.structures import Boxes, ImageList, Instances
from detectron2.layers.nms import batched_nms
class DeformableDETR(nn.Module):
"""Implements the Deformable DETR model.
Code is modified from the `official github repo
<https://github.com/fundamentalvision/Deformable-DETR>`_.
More details can be found in the `paper
<https://arxiv.org/abs/2010.04159>`_ .
Args:
backbone (nn.Module): the backbone module.
position_embedding (nn.Module): the position embedding module.
neck (nn.Module): the neck module.
transformer (nn.Module): the transformer module.
embed_dim (int): the dimension of the embedding.
num_classes (int): Number of total categories.
num_queries (int): Number of proposal dynamic anchor boxes in Transformer
criterion (nn.Module): Criterion for calculating the total losses.
pixel_mean (List[float]): Pixel mean value for image normalization.
Default: [123.675, 116.280, 103.530].
pixel_std (List[float]): Pixel std value for image normalization.
Default: [58.395, 57.120, 57.375].
aux_loss (bool): whether to use auxiliary loss. Default: True.
with_box_refine (bool): whether to use box refinement. Default: False.
as_two_stage (bool): whether to use two-stage. Default: False.
select_box_nums_for_evaluation (int): the number of topk candidates
slected at postprocess for evaluation. Default: 100.
"""
def __init__(
self,
backbone,
position_embedding,
neck,
transformer,
embed_dim,
num_classes,
num_queries,
criterion,
pixel_mean,
pixel_std,
aux_loss=True,
with_box_refine=False,
as_two_stage=False,
select_box_nums_for_evaluation=100,
device="cuda",
):
super().__init__()
# define backbone and position embedding module
self.backbone = backbone
self.position_embedding = position_embedding
# define neck module
self.neck = neck
# define learnable query embedding
self.num_queries = num_queries
if not as_two_stage:
self.query_embedding = nn.Embedding(num_queries, embed_dim * 2)
# define transformer module
self.transformer = transformer
# define classification head and box head
self.num_classes = num_classes
self.class_embed = nn.Linear(embed_dim, num_classes)
self.bbox_embed = MLP(embed_dim, embed_dim, 4, 3)
# where to calculate auxiliary loss in criterion
self.aux_loss = aux_loss
self.criterion = criterion
# define contoller for box refinement and two-stage variants
self.with_box_refine = with_box_refine
self.as_two_stage = as_two_stage
# init parameters for heads
prior_prob = 0.01
bias_value = -math.log((1 - prior_prob) / prior_prob)
self.class_embed.bias.data = torch.ones(num_classes) * bias_value
nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0)
for _, neck_layer in self.neck.named_modules():
if isinstance(neck_layer, nn.Conv2d):
nn.init.xavier_uniform_(neck_layer.weight, gain=1)
nn.init.constant_(neck_layer.bias, 0)
# If two-stage, the last class_embed and bbox_embed is for region proposal generation
# Decoder layers share the same heads without box refinement, while use the different
# heads when box refinement is used.
num_pred = (
(transformer.decoder.num_layers + 1) if as_two_stage else transformer.decoder.num_layers
)
if with_box_refine:
self.class_embed = nn.ModuleList(
[copy.deepcopy(self.class_embed) for i in range(num_pred)]
)
self.bbox_embed = nn.ModuleList(
[copy.deepcopy(self.bbox_embed) for i in range(num_pred)]
)
nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0)
self.transformer.decoder.bbox_embed = self.bbox_embed
else:
nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0)
self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)])
self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)])
self.transformer.decoder.bbox_embed = None
# hack implementation for two-stage. The last class_embed and bbox_embed is for region proposal generation
if as_two_stage:
self.transformer.decoder.class_embed = self.class_embed
for box_embed in self.bbox_embed:
nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0)
# set topk boxes selected for inference
self.select_box_nums_for_evaluation = select_box_nums_for_evaluation
# normalizer for input raw images
self.device = device
pixel_mean = torch.Tensor(pixel_mean).to(self.device).view(3, 1, 1)
pixel_std = torch.Tensor(pixel_std).to(self.device).view(3, 1, 1)
self.normalizer = lambda x: (x - pixel_mean) / pixel_std
def forward(self, batched_inputs):
images = self.preprocess_image(batched_inputs)
if self.training:
batch_size, _, H, W = images.tensor.shape
img_masks = images.tensor.new_ones(batch_size, H, W)
for img_id in range(batch_size):
# mask padding regions in batched images
img_h, img_w = batched_inputs[img_id]["instances"].image_size
img_masks[img_id, :img_h, :img_w] = 0
else:
batch_size, _, H, W = images.tensor.shape
img_masks = images.tensor.new_zeros(batch_size, H, W)
# original features
features = self.backbone(images.tensor) # output feature dict
# project backbone features to the reuired dimension of transformer
# we use multi-scale features in deformable DETR
multi_level_feats = self.neck(features)
multi_level_masks = []
multi_level_position_embeddings = []
for feat in multi_level_feats:
multi_level_masks.append(
F.interpolate(img_masks[None], size=feat.shape[-2:]).to(torch.bool).squeeze(0)
)
multi_level_position_embeddings.append(self.position_embedding(multi_level_masks[-1]))
# initialize object query embeddings
query_embeds = None
if not self.as_two_stage:
query_embeds = self.query_embedding.weight
(
inter_states,
init_reference,
inter_references,
enc_outputs_class,
enc_outputs_coord_unact,
anchors,
) = self.transformer(
multi_level_feats, multi_level_masks, multi_level_position_embeddings, query_embeds
)
# Calculate output coordinates and classes.
outputs_classes = []
outputs_coords = []
for lvl in range(inter_states.shape[0]):
if lvl == 0:
reference = init_reference
else:
reference = inter_references[lvl - 1]
reference = inverse_sigmoid(reference)
outputs_class = self.class_embed[lvl](inter_states[lvl])
tmp = self.bbox_embed[lvl](inter_states[lvl])
if reference.shape[-1] == 4:
tmp += reference
else:
assert reference.shape[-1] == 2
tmp[..., :2] += reference
outputs_coord = tmp.sigmoid()
outputs_classes.append(outputs_class)
outputs_coords.append(outputs_coord)
outputs_class = torch.stack(outputs_classes)
# tensor shape: [num_decoder_layers, bs, num_query, num_classes]
outputs_coord = torch.stack(outputs_coords)
# tensor shape: [num_decoder_layers, bs, num_query, 4]
# prepare for loss computation
output = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1],
'init_reference': init_reference}
if self.aux_loss:
output["aux_outputs"] = self._set_aux_loss(outputs_class, outputs_coord)
if self.as_two_stage:
enc_outputs_coord = enc_outputs_coord_unact.sigmoid()
output["enc_outputs"] = {
"pred_logits": enc_outputs_class,
"pred_boxes": enc_outputs_coord,
"anchors": anchors,
}
if self.training:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
targets = self.prepare_targets(gt_instances)
loss_dict = self.criterion(output, targets)
weight_dict = self.criterion.weight_dict
for k in loss_dict.keys():
if k in weight_dict:
loss_dict[k] *= weight_dict[k]
return loss_dict
else:
box_cls = output["pred_logits"]
box_pred = output["pred_boxes"]
if self.criterion.assign_second_stage:
results = self.nms_inference(box_cls, box_pred, images.image_sizes)
else:
results = self.inference(box_cls, box_pred, images.image_sizes)
processed_results = []
for results_per_image, input_per_image, image_size in zip(
results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
r = detector_postprocess(results_per_image, height, width)
processed_results.append({"instances": r})
return processed_results
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [
{"pred_logits": a, "pred_boxes": b}
for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
]
def inference(self, box_cls, box_pred, image_sizes):
"""
Arguments:
box_cls (Tensor): tensor of shape (batch_size, num_queries, K).
The tensor predicts the classification probability for each query.
box_pred (Tensor): tensors of shape (batch_size, num_queries, 4).
The tensor predicts 4-vector (x,y,w,h) box
regression values for every queryx
image_sizes (List[torch.Size]): the input image sizes
Returns:
results (List[Instances]): a list of #images elements.
"""
assert len(box_cls) == len(image_sizes)
results = []
# Select top-k confidence boxes for inference
prob = box_cls.sigmoid()
topk_values, topk_indexes = torch.topk(
prob.view(box_cls.shape[0], -1), self.select_box_nums_for_evaluation, dim=1
)
scores = topk_values
topk_boxes = torch.div(topk_indexes, box_cls.shape[2], rounding_mode="floor")
labels = topk_indexes % box_cls.shape[2]
boxes = torch.gather(box_pred, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
for i, (scores_per_image, labels_per_image, box_pred_per_image, image_size) in enumerate(
zip(scores, labels, boxes, image_sizes)
):
result = Instances(image_size)
result.pred_boxes = Boxes(box_cxcywh_to_xyxy(box_pred_per_image))
result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0])
result.scores = scores_per_image
result.pred_classes = labels_per_image
results.append(result)
return results
# DETA using nms for post-process
def nms_inference(self, box_cls, box_pred, image_sizes):
"""
Arguments:
box_cls (Tensor): tensor of shape (batch_size, num_queries, K).
The tensor predicts the classification probability for each query.
box_pred (Tensor): tensors of shape (batch_size, num_queries, 4).
The tensor predicts 4-vector (x,y,w,h) box
regression values for every queryx
image_sizes (List[torch.Size]): the input image sizes
Returns:
results (List[Instances]): a list of #images elements.
"""
assert len(box_cls) == len(image_sizes)
results = []
bs, n_queries, n_cls = box_cls.shape
# Select top-k confidence boxes for inference
prob = box_cls.sigmoid()
all_scores = prob.view(bs, n_queries * n_cls).to(box_cls.device)
all_indexes = torch.arange(n_queries * n_cls)[None].repeat(bs, 1).to(box_cls.device)
all_boxes = torch.div(all_indexes, box_cls.shape[2], rounding_mode="floor")
all_labels = all_indexes % box_cls.shape[2]
# convert to xyxy for nms post-process
boxes = box_cxcywh_to_xyxy(box_pred)
boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1, 1, 4))
for i, (scores_per_image, labels_per_image, box_pred_per_image, image_size) in enumerate(
zip(all_scores, all_labels, boxes, image_sizes)
):
pre_topk = scores_per_image.topk(10000).indices
box = box_pred_per_image[pre_topk]
score = scores_per_image[pre_topk]
label = labels_per_image[pre_topk]
# nms post-process
keep_index = batched_nms(box, score, label, 0.7)[:100]
result = Instances(image_size)
result.pred_boxes = Boxes(box[keep_index])
result.pred_boxes.scale(scale_x=image_size[1], scale_y=image_size[0])
result.scores = score[keep_index]
result.pred_classes = label[keep_index]
results.append(result)
return results
def prepare_targets(self, targets):
new_targets = []
for targets_per_image in targets:
h, w = targets_per_image.image_size
image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float, device=self.device)
gt_classes = targets_per_image.gt_classes
gt_boxes = targets_per_image.gt_boxes.tensor / image_size_xyxy
gt_boxes = box_xyxy_to_cxcywh(gt_boxes)
new_targets.append({"labels": gt_classes, "boxes": gt_boxes})
return new_targets
def preprocess_image(self, batched_inputs):
images = [self.normalizer(x["image"].to(self.device)) for x in batched_inputs]
images = ImageList.from_tensors(images)
return images