Spaces:
Runtime error
Runtime error
Anchor DETR: Query Design for Transformer-Based Object Detection
Yingming Wang, Xiangyu Zhang, Tong Yang, Jian Sun

Pretrained Weights
Here's our pretrained Anchor-DETR weights based on detrex.
Name | Backbone | Pretrain | Epochs | box AP |
download |
---|---|---|---|---|---|
Anchor-DETR-R50 | R-50 | IN1k | 50 | 41.9 | model |
Converted Weights
Name | Backbone | Pretrain | Epochs | box AP |
download |
---|---|---|---|---|---|
Anchor-DETR-R50 | R-50 | IN1k | 50 | 42.2 | model |
Anchor-DETR-R50-DC5 | R-50 | IN1k | 50 | 44.2 | model |
Anchor-DETR-R101 | R-101 | IN1k | 50 | 43.5 | model |
Anchor-DETR-R101-DC5 | R-101 | IN1k | 50 | 45.1 | model |
Note: Here we borrowed the pretrained weight from Anchor-DETR official repo. And our detrex training results will be released in the future version.
Training
Training Anchor-DETR-R50 model:
cd detrex
python tools/train_net.py --config-file projects/anchor_detr/configs/anchor_detr_r50_50ep.py --num-gpus 8
By default, we use 8 GPUs with total batch size as 64 for training.
Evaluation
Model evaluation can be done as follows:
cd detrex
python tools/train_net.py --config-file projects/anchor_detr/configs/path/to/config.py \
--eval-only train.init_checkpoint=/path/to/model_checkpoint
Citing Anchor-DETR
@inproceedings{wang2022anchor,
title={Anchor detr: Query design for transformer-based detector},
author={Wang, Yingming and Zhang, Xiangyu and Yang, Tong and Sun, Jian},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={36},
number={3},
pages={2567--2575},
year={2022}
}