mathiaszinnen's picture
Initialize app
3e99b05

Anchor DETR: Query Design for Transformer-Based Object Detection

Yingming Wang, Xiangyu Zhang, Tong Yang, Jian Sun

[arXiv] [BibTeX]


Pretrained Weights

Here's our pretrained Anchor-DETR weights based on detrex.

Name Backbone Pretrain Epochs box
AP
download
Anchor-DETR-R50 R-50 IN1k 50 41.9 model

Converted Weights

Name Backbone Pretrain Epochs box
AP
download
Anchor-DETR-R50 R-50 IN1k 50 42.2 model
Anchor-DETR-R50-DC5 R-50 IN1k 50 44.2 model
Anchor-DETR-R101 R-101 IN1k 50 43.5 model
Anchor-DETR-R101-DC5 R-101 IN1k 50 45.1 model

Note: Here we borrowed the pretrained weight from Anchor-DETR official repo. And our detrex training results will be released in the future version.

Training

Training Anchor-DETR-R50 model:

cd detrex
python tools/train_net.py --config-file projects/anchor_detr/configs/anchor_detr_r50_50ep.py --num-gpus 8

By default, we use 8 GPUs with total batch size as 64 for training.

Evaluation

Model evaluation can be done as follows:

cd detrex
python tools/train_net.py --config-file projects/anchor_detr/configs/path/to/config.py \
    --eval-only train.init_checkpoint=/path/to/model_checkpoint

Citing Anchor-DETR

@inproceedings{wang2022anchor,
  title={Anchor detr: Query design for transformer-based detector},
  author={Wang, Yingming and Zhang, Xiangyu and Yang, Tong and Sun, Jian},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={36},
  number={3},
  pages={2567--2575},
  year={2022}
}