Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The IDEA Authors. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------------------------------ | |
# Copyright (c) 2022 Microsoft | |
# ------------------------------------------------------------------------------------------------ | |
# Modified from: | |
# https://github.com/FocalNet/FocalNet-DINO/blob/main/models/dino/focal.py | |
# ------------------------------------------------------------------------------------------------ | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
from detectron2.modeling.backbone import Backbone | |
class Mlp(nn.Module): | |
"""Multilayer perceptron.""" | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0 | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class FocalModulation(nn.Module): | |
""" Focal Modulation | |
Args: | |
dim (int): Number of input channels. | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
focal_level (int): Number of focal levels | |
focal_window (int): Focal window size at focal level 1 | |
focal_factor (int, default=2): Step to increase the focal window | |
use_postln (bool, default=False): Whether use post-modulation layernorm | |
""" | |
def __init__( | |
self, | |
dim, | |
proj_drop=0., | |
focal_level=2, | |
focal_window=7, | |
focal_factor=2, | |
use_postln=False, | |
use_postln_in_modulation=False, | |
normalize_modulator=False | |
): | |
super().__init__() | |
self.dim = dim | |
# specific args for focalv3 | |
self.focal_level = focal_level | |
self.focal_window = focal_window | |
self.focal_factor = focal_factor | |
self.use_postln_in_modulation = use_postln_in_modulation | |
self.normalize_modulator = normalize_modulator | |
self.f = nn.Linear(dim, 2*dim+(self.focal_level+1), bias=True) | |
self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, padding=0, groups=1, bias=True) | |
self.act = nn.GELU() | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.focal_layers = nn.ModuleList() | |
if self.use_postln_in_modulation: | |
self.ln = nn.LayerNorm(dim) | |
for k in range(self.focal_level): | |
kernel_size = self.focal_factor*k + self.focal_window | |
self.focal_layers.append( | |
nn.Sequential( | |
nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, | |
padding=kernel_size//2, bias=False), | |
nn.GELU(), | |
) | |
) | |
def forward(self, x): | |
""" Forward function. | |
Args: | |
x: input features with shape of (B, H, W, C) | |
""" | |
B, nH, nW, C = x.shape | |
x = self.f(x) | |
x = x.permute(0, 3, 1, 2).contiguous() | |
q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1) | |
ctx_all = 0 | |
for l in range(self.focal_level): | |
ctx = self.focal_layers[l](ctx) | |
ctx_all = ctx_all + ctx*gates[:, l:l+1] | |
ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) | |
ctx_all = ctx_all + ctx_global*gates[:,self.focal_level:] | |
if self.normalize_modulator: | |
ctx_all = ctx_all / (self.focal_level+1) | |
x_out = q * self.h(ctx_all) | |
x_out = x_out.permute(0, 2, 3, 1).contiguous() | |
if self.use_postln_in_modulation: | |
x_out = self.ln(x_out) | |
x_out = self.proj(x_out) | |
x_out = self.proj_drop(x_out) | |
return x_out | |
class FocalModulationBlock(nn.Module): | |
""" Focal Modulation Block. | |
Args: | |
dim (int): Number of input channels. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
focal_level (int): number of focal levels | |
focal_window (int): focal kernel size at level 1 | |
""" | |
def __init__( | |
self, | |
dim, | |
mlp_ratio=4., | |
drop=0., | |
drop_path=0., | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
focal_level=2, | |
focal_window=9, | |
use_postln=False, | |
use_postln_in_modulation=False, | |
normalize_modulator=False, | |
use_layerscale=False, | |
layerscale_value=1e-4 | |
): | |
super().__init__() | |
self.dim = dim | |
self.mlp_ratio = mlp_ratio | |
self.focal_window = focal_window | |
self.focal_level = focal_level | |
self.use_postln = use_postln | |
self.use_layerscale = use_layerscale | |
self.norm1 = norm_layer(dim) | |
self.modulation = FocalModulation( | |
dim, | |
focal_window=self.focal_window, | |
focal_level=self.focal_level, | |
proj_drop=drop, | |
use_postln_in_modulation=use_postln_in_modulation, | |
normalize_modulator=normalize_modulator, | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
self.H = None | |
self.W = None | |
self.gamma_1 = 1.0 | |
self.gamma_2 = 1.0 | |
if self.use_layerscale: | |
self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) | |
self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) | |
def forward(self, x): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, H*W, C). | |
H, W: Spatial resolution of the input feature. | |
""" | |
B, L, C = x.shape | |
H, W = self.H, self.W | |
assert L == H * W, "input feature has wrong size" | |
shortcut = x | |
if not self.use_postln: | |
x = self.norm1(x) | |
x = x.view(B, H, W, C) | |
# FM | |
x = self.modulation(x).view(B, H * W, C) | |
if self.use_postln: | |
x = self.norm1(x) | |
# FFN | |
x = shortcut + self.drop_path(self.gamma_1 * x) | |
if self.use_postln: | |
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) | |
else: | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class BasicLayer(nn.Module): | |
""" A basic focal modulation layer for one stage. | |
Args: | |
dim (int): Number of feature channels | |
depth (int): Depths of this stage. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
focal_level (int): Number of focal levels | |
focal_window (int): Focal window size at focal level 1 | |
use_conv_embed (bool): Use overlapped convolution for patch embedding or now. Default: False | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
""" | |
def __init__(self, | |
dim, | |
depth, | |
mlp_ratio=4., | |
drop=0., | |
drop_path=0., | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
focal_window=9, | |
focal_level=2, | |
use_conv_embed=False, | |
use_postln=False, | |
use_postln_in_modulation=False, | |
normalize_modulator=False, | |
use_layerscale=False, | |
use_checkpoint=False | |
): | |
super().__init__() | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
FocalModulationBlock( | |
dim=dim, | |
mlp_ratio=mlp_ratio, | |
drop=drop, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
focal_window=focal_window, | |
focal_level=focal_level, | |
use_postln=use_postln, | |
use_postln_in_modulation=use_postln_in_modulation, | |
normalize_modulator=normalize_modulator, | |
use_layerscale=use_layerscale, | |
norm_layer=norm_layer) | |
for i in range(depth)]) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample( | |
patch_size=2, | |
in_chans=dim, embed_dim=2*dim, | |
use_conv_embed=use_conv_embed, | |
norm_layer=norm_layer, | |
is_stem=False | |
) | |
else: | |
self.downsample = None | |
def forward(self, x, H, W): | |
""" Forward function. | |
Args: | |
x: Input feature, tensor size (B, H*W, C). | |
H, W: Spatial resolution of the input feature. | |
""" | |
for blk in self.blocks: | |
blk.H, blk.W = H, W | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x = blk(x) | |
if self.downsample is not None: | |
x_reshaped = x.transpose(1, 2).view(x.shape[0], x.shape[-1], H, W) | |
x_down = self.downsample(x_reshaped) | |
x_down = x_down.flatten(2).transpose(1, 2) | |
Wh, Ww = (H + 1) // 2, (W + 1) // 2 | |
return x, H, W, x_down, Wh, Ww | |
else: | |
return x, H, W, x, H, W | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
Args: | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
use_conv_embed (bool): Whether use overlapped convolution for patch embedding. Default: False | |
is_stem (bool): Is the stem block or not. | |
""" | |
def __init__( | |
self, | |
patch_size=4, | |
in_chans=3, | |
embed_dim=96, | |
norm_layer=None, | |
use_conv_embed=False, | |
is_stem=False | |
): | |
super().__init__() | |
patch_size = to_2tuple(patch_size) | |
self.patch_size = patch_size | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
if use_conv_embed: | |
# if we choose to use conv embedding, then we treat the stem and non-stem differently | |
if is_stem: | |
kernel_size = 7; padding = 2; stride = 4 | |
else: | |
kernel_size = 3; padding = 1; stride = 2 | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) | |
else: | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
"""Forward function.""" | |
_, _, H, W = x.size() | |
if W % self.patch_size[1] != 0: | |
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) | |
if H % self.patch_size[0] != 0: | |
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) | |
x = self.proj(x) # B C Wh Ww | |
if self.norm is not None: | |
Wh, Ww = x.size(2), x.size(3) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.norm(x) | |
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) | |
return x | |
class FocalNet(Backbone): | |
"""Implement paper `Focal Modulation Networks <https://arxiv.org/pdf/2203.11926.pdf>`_ | |
Args: | |
pretrain_img_size (int): Input image size for training the pretrained model, | |
used in absolute postion embedding. Default 224. | |
patch_size (int | tuple(int)): Patch size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
depths (tuple[int]): Depths of each Swin Transformer stage. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. | |
drop_rate (float): Dropout rate. | |
drop_path_rate (float): Stochastic depth rate. Default: 0.2. | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True. | |
out_indices (Sequence[int]): Output from which stages. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. | |
focal_levels (Sequence[int]): Number of focal levels at four stages | |
focal_windows (Sequence[int]): Focal window sizes at first focal level at four stages | |
use_conv_embed (bool): Whether use overlapped convolution for patch embedding | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
""" | |
def __init__( | |
self, | |
pretrain_img_size=1600, | |
patch_size=4, | |
in_chans=3, | |
embed_dim=96, | |
depths=[2, 2, 6, 2], | |
mlp_ratio=4., | |
drop_rate=0., | |
drop_path_rate=0.3, # 0.3 or 0.4 works better for large+ models | |
norm_layer=nn.LayerNorm, | |
patch_norm=True, | |
out_indices=(0, 1, 2, 3), | |
frozen_stages=-1, | |
focal_levels=[3, 3, 3, 3], | |
focal_windows=[3, 3, 3, 3], | |
use_conv_embed=False, | |
use_postln=False, | |
use_postln_in_modulation=False, | |
use_layerscale=False, | |
normalize_modulator=False, | |
use_checkpoint=False, | |
): | |
super().__init__() | |
self.pretrain_img_size = pretrain_img_size | |
self.num_layers = len(depths) | |
self.embed_dim = embed_dim | |
self.patch_norm = patch_norm | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
# split image into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, | |
norm_layer=norm_layer if self.patch_norm else None, | |
use_conv_embed=use_conv_embed, is_stem=True) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
# stochastic depth | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = BasicLayer( | |
dim=int(embed_dim * 2 ** i_layer), | |
depth=depths[i_layer], | |
mlp_ratio=mlp_ratio, | |
drop=drop_rate, | |
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], | |
norm_layer=norm_layer, | |
downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None, | |
focal_window=focal_windows[i_layer], | |
focal_level=focal_levels[i_layer], | |
use_conv_embed=use_conv_embed, | |
use_postln=use_postln, | |
use_postln_in_modulation=use_postln_in_modulation, | |
normalize_modulator=normalize_modulator, | |
use_layerscale=use_layerscale, | |
use_checkpoint=use_checkpoint) | |
self.layers.append(layer) | |
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)] | |
self.num_features = num_features | |
# add a norm layer for each output | |
for i_layer in out_indices: | |
layer = norm_layer(num_features[i_layer]) | |
layer_name = f"norm{i_layer}" | |
self.add_module(layer_name, layer) | |
self._freeze_stages() | |
# add basic info | |
self._out_features = ["p{}".format(i) for i in self.out_indices] | |
self._out_feature_channels = { | |
"p{}".format(i): self.embed_dim * 2**i for i in self.out_indices | |
} | |
self._out_feature_strides = {"p{}".format(i): 2 ** (i + 2) for i in self.out_indices} | |
self._size_devisibility = 32 | |
self.apply(self._init_weights) | |
def _freeze_stages(self): | |
if self.frozen_stages >= 0: | |
self.patch_embed.eval() | |
for param in self.patch_embed.parameters(): | |
param.requires_grad = False | |
if self.frozen_stages >= 2: | |
self.pos_drop.eval() | |
for i in range(0, self.frozen_stages - 1): | |
m = self.layers[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def forward(self, x): | |
"""Forward function of `FocalNet` | |
Args: | |
x (torch.Tensor): the input tensor for feature extraction. | |
Returns: | |
dict[str->Tensor]: mapping from feature name (e.g., "p1") to tensor | |
""" | |
x = self.patch_embed(x) | |
Wh, Ww = x.size(2), x.size(3) | |
x = x.flatten(2).transpose(1, 2) | |
x = self.pos_drop(x) | |
outs = {} | |
for i in range(self.num_layers): | |
layer = self.layers[i] | |
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) | |
if i in self.out_indices: | |
norm_layer = getattr(self, f"norm{i}") | |
x_out = norm_layer(x_out) | |
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous() | |
outs["p{}".format(i)] = out | |
return outs | |