Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 The IDEA Authors. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------------------------------ | |
# Modified from: | |
# https://github.com/FrancescoSaverioZuppichini/glasses/blob/master/glasses/nn/blocks/__init__.py | |
# ------------------------------------------------------------------------------------------------ | |
from functools import partial | |
import torch.nn as nn | |
class ConvNormAct(nn.Module): | |
"""Utility module that stacks one convolution 2D layer, | |
a normalization layer and an activation function. | |
Args: | |
in_channels (int): The number of input channels. | |
out_channels (int): The number of output channels. | |
kernel_size (int): Size of the convolving kernel. Default: 1. | |
stride (int): Stride of convolution. Default: 1. | |
padding (int): Padding added to all four sides of the input. Default: 0. | |
dilation (int): Spacing between kernel elements. Default: 1. | |
groups (int): Number of blocked connections from input channels | |
to output channels. Default: 1. | |
bias (bool): if True, adds a learnable bias to the output. Default: True. | |
norm_layer (nn.Module): Normalization layer used in `ConvNormAct`. Default: None. | |
activation (nn.Module): Activation layer used in `ConvNormAct`. Default: None. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: int = 1, | |
stride: int = 1, | |
padding: int = 0, | |
dilation: int = 1, | |
groups: int = 1, | |
bias: bool = True, | |
norm_layer: nn.Module = None, | |
activation: nn.Module = None, | |
**kwargs, | |
): | |
super(ConvNormAct, self).__init__() | |
self.conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
groups=groups, | |
bias=bias, | |
**kwargs, | |
) | |
self.norm = norm_layer | |
self.activation = activation | |
def forward(self, x): | |
"""Forward function for `ConvNormAct`""" | |
x = self.conv(x) | |
if self.norm is not None: | |
x = self.norm(x) | |
if self.activation is not None: | |
x = self.activation(x) | |
return x | |
ConvNorm = partial(ConvNormAct, activation=None) | |