Spaces:
Runtime error
Runtime error
import torch | |
from model import create_resnet | |
import numpy as np | |
import gradio as gr | |
import os | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
model = create_resnet() | |
model.load_state_dict(torch.load(f="ResNet18_epoch-14.pth", | |
map_location=torch.device("cpu"))) | |
from torchvision import datasets, transforms | |
transform = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
]) | |
def predict(img): | |
start_time = timer() | |
transformed_image = transform(img) | |
transformed_image = transformed_image.unsqueeze(0) | |
model.eval() | |
with torch.no_grad(): | |
output = model(transformed_image) | |
predicted_label = int(torch.sigmoid(output).item()) | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
output = "Good" if predicted_label == 1 else "Bad" | |
return output, pred_time | |
# Gradio Interface | |
title = "π Lemon Quality Classifier π" | |
description = "A [ResNet18](https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html) computer vision model to classify lemons as good or bad in quality." | |
article = "Created for practice and learning." | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=1, label="Prediction"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
demo.launch() | |