Spaces:
Runtime error
Runtime error
Initial Commit
Browse files- .gitattributes +2 -0
- Experiments Notebook/lemon_quality_classification.ipynb +3 -0
- Experiments Notebook/scripts/data_setup.py +29 -0
- Experiments Notebook/scripts/engine.py +110 -0
- Experiments Notebook/scripts/utils.py +12 -0
- ResNet18_epoch-14.pth +3 -0
- app.py +53 -0
- examples/bad_quality_0.jpg +0 -0
- examples/bad_quality_100.jpg +0 -0
- examples/good_quality_1.jpg +0 -0
- examples/good_quality_100.jpg +0 -0
- model.py +13 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
ResNet18_epoch-14.pth filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Experiments[[:space:]]Notebook/lemon_quality_classification.ipynb filter=lfs diff=lfs merge=lfs -text
|
Experiments Notebook/lemon_quality_classification.ipynb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d5c7114c60fd89b15933105e51cf3f0b7626c2714b63f416d1dea58aff4e12c
|
3 |
+
size 10406169
|
Experiments Notebook/scripts/data_setup.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import DataLoader
|
2 |
+
from torchvision import datasets, transforms
|
3 |
+
import torchvision
|
4 |
+
|
5 |
+
def make_dataloaders(train_ds,
|
6 |
+
test_ds,
|
7 |
+
batch_size: int):
|
8 |
+
"""Creates dataloaders
|
9 |
+
Creates dataloaders by taking the directory in which train and test data are stored.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
transforms(torchvision.transforms.Compose): Transform to apply to the dataset.
|
13 |
+
|
14 |
+
Returns:
|
15 |
+
tuple: train_dataloader, test_dataloader, class_names
|
16 |
+
"""
|
17 |
+
|
18 |
+
|
19 |
+
train_dataloader = DataLoader(dataset = train_ds,
|
20 |
+
batch_size = batch_size,
|
21 |
+
num_workers = 1,
|
22 |
+
shuffle = True)
|
23 |
+
|
24 |
+
test_dataloader = DataLoader(dataset = test_ds,
|
25 |
+
batch_size = batch_size,
|
26 |
+
num_workers = 1,
|
27 |
+
shuffle = False)
|
28 |
+
|
29 |
+
return train_dataloader, test_dataloader
|
Experiments Notebook/scripts/engine.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from tqdm.auto import tqdm
|
5 |
+
|
6 |
+
def train_step(model: torch.nn.Module,
|
7 |
+
dataloader: torch.utils.data.DataLoader,
|
8 |
+
loss_fn: torch.nn.Module,
|
9 |
+
optimizer: torch.optim.Optimizer,
|
10 |
+
device: torch.device):
|
11 |
+
model.train()
|
12 |
+
train_loss, train_acc = 0, 0
|
13 |
+
for batch, (X, y) in enumerate(dataloader):
|
14 |
+
X, y = X.to(device), y.to(device)
|
15 |
+
y_pred = model(X)
|
16 |
+
y = y.unsqueeze(dim = 1).float()
|
17 |
+
loss = loss_fn(y_pred, y)
|
18 |
+
train_loss = train_loss + loss.item()
|
19 |
+
optimizer.zero_grad()
|
20 |
+
loss.backward()
|
21 |
+
optimizer.step()
|
22 |
+
|
23 |
+
y_pred_class = torch.sigmoid(y_pred)
|
24 |
+
acc = (y_pred_class == y).sum().item() / len(y_pred)
|
25 |
+
train_acc = train_acc + acc
|
26 |
+
|
27 |
+
train_loss = train_loss / len(dataloader)
|
28 |
+
train_acc = train_acc / len(dataloader)
|
29 |
+
|
30 |
+
return train_loss, train_acc
|
31 |
+
|
32 |
+
def test_step(model: torch.nn.Module,
|
33 |
+
dataloader: torch.utils.data.DataLoader,
|
34 |
+
loss_fn: torch.nn.Module,
|
35 |
+
device: torch.device):
|
36 |
+
model.eval()
|
37 |
+
test_loss, test_acc = 0, 0
|
38 |
+
|
39 |
+
with torch.inference_mode():
|
40 |
+
for batch, (X, y) in enumerate(dataloader):
|
41 |
+
X, y = X.to(device), y.to(device)
|
42 |
+
y_pred = model(X)
|
43 |
+
y = y.unsqueeze(dim = 1).float()
|
44 |
+
loss = loss_fn(y_pred, y)
|
45 |
+
test_loss = test_loss + loss.item()
|
46 |
+
|
47 |
+
y_pred_class = y_pred.sigmoid()
|
48 |
+
acc = (y_pred_class == y).sum().item() / len(y_pred)
|
49 |
+
test_acc = test_acc + acc
|
50 |
+
test_loss = test_loss / len(dataloader)
|
51 |
+
test_acc = test_acc / len(dataloader)
|
52 |
+
return test_loss, test_acc
|
53 |
+
def train(model: torch.nn.Module,
|
54 |
+
train_dataloader: torch.utils.data.DataLoader,
|
55 |
+
test_dataloader: torch.utils.data.DataLoader,
|
56 |
+
optimizer: torch.optim.Optimizer,
|
57 |
+
loss_fn: torch.nn.Module,
|
58 |
+
epochs: int,
|
59 |
+
device: torch.device,
|
60 |
+
writer: torch.utils.tensorboard.SummaryWriter):
|
61 |
+
results = {"train_loss": [],
|
62 |
+
"train_acc": [],
|
63 |
+
"test_loss": [],
|
64 |
+
"test_acc": []}
|
65 |
+
model.to(device)
|
66 |
+
# loss_fn = nn.CrossEntropyLoss()
|
67 |
+
# optimizer = torch.optim.Adam(model.parameters(),lr = 0.01)
|
68 |
+
for epoch in tqdm(range(epochs)):
|
69 |
+
train_loss, train_acc = train_step(model = model,
|
70 |
+
dataloader = train_dataloader,
|
71 |
+
loss_fn = loss_fn,
|
72 |
+
optimizer = optimizer,
|
73 |
+
device = device)
|
74 |
+
test_loss, test_acc = test_step(model = model,
|
75 |
+
dataloader = test_dataloader,
|
76 |
+
loss_fn = loss_fn,
|
77 |
+
device = device)
|
78 |
+
|
79 |
+
print(
|
80 |
+
f"| Epoch: {epoch+1} | "
|
81 |
+
f"train_loss: {train_loss:.4f} | "
|
82 |
+
f"train_acc: {train_loss:.4f} | "
|
83 |
+
f"test_loss: {test_loss:.4f} | "
|
84 |
+
f"test_acc: {test_loss:.4f} |"
|
85 |
+
)
|
86 |
+
|
87 |
+
results['train_loss'].append(train_loss)
|
88 |
+
results['train_acc'].append(train_acc)
|
89 |
+
results['test_loss'].append(test_loss)
|
90 |
+
results['test_acc'].append(test_acc)
|
91 |
+
|
92 |
+
writer.add_scalars(main_tag="Loss",
|
93 |
+
tag_scalar_dict={"train_loss": train_loss,
|
94 |
+
"test_loss": test_loss},
|
95 |
+
global_step=epoch)
|
96 |
+
|
97 |
+
# Add accuracy results to SummaryWriter
|
98 |
+
writer.add_scalars(main_tag="Accuracy",
|
99 |
+
tag_scalar_dict={"train_acc": train_acc,
|
100 |
+
"test_acc": test_acc},
|
101 |
+
global_step=epoch)
|
102 |
+
|
103 |
+
# Track the PyTorch model architecture
|
104 |
+
writer.add_graph(model=model,
|
105 |
+
# Pass in an example input
|
106 |
+
input_to_model=torch.randn(32, 3, 224, 224).to(device))
|
107 |
+
|
108 |
+
# Close the writer
|
109 |
+
writer.close()
|
110 |
+
return results
|
Experiments Notebook/scripts/utils.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import torch
|
3 |
+
def save_model(model: torch.nn.Module,
|
4 |
+
model_name: str,
|
5 |
+
target_dir: str):
|
6 |
+
target_dir_path = Path(target_dir)
|
7 |
+
target_dir_path.mkdir(parents = True,
|
8 |
+
exist_ok = True)
|
9 |
+
assert model_name.endswith(".pth") or model_name.endswith(".pt"), "Model name should end with .pth or .pt"
|
10 |
+
model_save_path = target_dir_path / model_name
|
11 |
+
torch.save(obj = model.state_dict(),
|
12 |
+
f = model_save_path)
|
ResNet18_epoch-14.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91c272423567b9d8fec8de8a8cefc979e5838546008dbe7cc7b4377ff163c31d
|
3 |
+
size 44787749
|
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from model import create_resnet
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
from timeit import default_timer as timer
|
7 |
+
from typing import Tuple, Dict
|
8 |
+
|
9 |
+
model = create_resnet()
|
10 |
+
model.load_state_dict(torch.load(f="ResNet18_epoch-14.pth",
|
11 |
+
map_location=torch.device("cpu")))
|
12 |
+
|
13 |
+
from torchvision import datasets, transforms
|
14 |
+
transform = transforms.Compose([
|
15 |
+
transforms.Resize(256),
|
16 |
+
transforms.CenterCrop(224),
|
17 |
+
transforms.ToTensor(),
|
18 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
19 |
+
])
|
20 |
+
|
21 |
+
def predict(img):
|
22 |
+
start_time = timer()
|
23 |
+
transformed_image = transform(img)
|
24 |
+
transformed_image = transformed_image.unsqueeze(0)
|
25 |
+
model.eval()
|
26 |
+
|
27 |
+
with torch.no_grad():
|
28 |
+
output = model(transformed_image)
|
29 |
+
predicted_label = int(torch.sigmoid(output).item())
|
30 |
+
|
31 |
+
end_time = timer()
|
32 |
+
pred_time = round(end_time - start_time, 4)
|
33 |
+
output = "Good" if predicted_label == 1 else "Bad"
|
34 |
+
|
35 |
+
return output, pred_time
|
36 |
+
|
37 |
+
# Gradio Interface
|
38 |
+
title = "π Lemon Quality Classifier π"
|
39 |
+
description = "A [ResNet18](https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html) computer vision model to classify lemons as good or bad in quality."
|
40 |
+
article = "Created for practice and learning."
|
41 |
+
|
42 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
43 |
+
|
44 |
+
demo = gr.Interface(fn=predict,
|
45 |
+
inputs=gr.Image(type="pil"),
|
46 |
+
outputs=[gr.Label(num_top_classes=1, label="Prediction"),
|
47 |
+
gr.Number(label="Prediction time (s)")],
|
48 |
+
examples=example_list,
|
49 |
+
title=title,
|
50 |
+
description=description,
|
51 |
+
article=article)
|
52 |
+
|
53 |
+
demo.launch()
|
examples/bad_quality_0.jpg
ADDED
![]() |
examples/bad_quality_100.jpg
ADDED
![]() |
examples/good_quality_1.jpg
ADDED
![]() |
examples/good_quality_100.jpg
ADDED
![]() |
model.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
# Function for ResNet18.
|
6 |
+
def create_resnet():
|
7 |
+
weights = torchvision.models.ResNet18_Weights.DEFAULT
|
8 |
+
transforms = weights.transforms()
|
9 |
+
model = torchvision.models.resnet18(weights = weights)
|
10 |
+
for param in model.parameters():
|
11 |
+
param.requires_grad = False
|
12 |
+
model.fc = nn.Linear(in_features=512, out_features=1, bias=True)
|
13 |
+
return model
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.0.0
|
2 |
+
torchvision==0.15.1
|
3 |
+
gradio==3.1.4
|